Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Spacecraft pulsed flights trajectories with the stages jettison into the atmosphere and phase restriction (part I)

Published: 26.09.2019

Authors: Grigoriev I.S., Proskuryakov A.I

Published in issue: #9(93)/2019

DOI: 10.18698/2308-6033-2019-9-1917

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The part I of the paper considers the reducing of the near-Earth space debris due to the stages discharge into the Earth’s atmosphere, introduces the solution for optimizing the impulse transfer between the artificial Earth satellite reference circular orbit and the target elliptical orbit with a phase constraint on the maximum distance of the spacecraft from the Earth. A specially developed numerical-analytical differentiation technology allows us to calculate derivatives under the transversality of Lagrange principle.The part II of the paper proposes the transversality and stationarity conditions analysis, which results in the conclusion that the Beletsky — Egorov — Pines integral, and the Hamiltonian are continuous in the moments of all intermediate impulse actions application, including the stage discharge moments.The paper shows that the problem solution for various flight schemes coincides with a similar one without a priori assumption about the impulse effects apsidal nature. 

[1] Grodzovsky G.L., Ivanov Yu.N., Tokarev V.V. Mekhanika kosmicheskogo poleta. Problemy optimizatsii [The mechanics of space flight. Optimization problems]. Moscow, Nauka Publ., 1975, 702 p.
[2] Grigor’ev I.S., Proskuryakov A.I. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 4. DOI: 10.18698/2308-6033-2019-4-1869
[3] Ivashkin V.V. Optimizatsiya kosmicheskikh manevrov pri ogranicheniyakh na rastoyaniya do planet [Optimization of space maneuvers with distance to planet constraints]. Moscow, Nauka Publ., 1975, 392 p.
[4] Orlov Yu.V. Teoriya optimalnykh system s obobschennymi upravleniyami [The theory of optimal systems with generalized controls]. Moscow, Nauka Publ., 1988, 187 p.
[5] Dubovsky S.V. Kosmicheskie issledovaniya — Cosmic Research, 1965, vol. 5, no. 4, pp. 494–507.
[6] Il’in V.A., Kuzmak G.E. Optimalnye perelety kosmicheskikh apparatov [Optimal spacecraft flights]. Moscow, Nauka Publ., 1976, 744p.
[7] Grigor’ev I.S., Grigor’ev K.G. Kosmicheskie issledovaniya — Cosmic Research, 2002, vol. 40, no. 1, pp. 88–111.
[8] Duboshin G.N. Spravochnoe rukovodstvo po nebesnoy mekhanike i astrodinamike [A reference guide to celestial mechanics and astrodynamics]. Moscow, Nauka Publ., 1976, 864 p.
[9] Voevodin V.V., Voevodin Vl.V. Parallelnye vychisleniya [Parallel computing]. St. Petersburg, BHV- Petersburg Publ., 2002, 1410 p.
[10] Gorban A.N., Senashova M.Yг. Vychislitelnye tekhnologii — Computational Technologies, 1999, vol. 4, spec. no., pp. 55–68.
[11] Senashova M.YU. Sibirskiy zhurnal vychislitelnoy matematiki — Siberian Journal of Numerical Mathematics, 2007, vol. 10, no. 1, pp. 77–88.
[12] Isaev V.K., Sonin V.V. Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki (Journal of Computational Mathematics and Mathematical Physics), 1963, vol. 3, no. 6, pp. 1114–1116.
[13] Fedorenko R.P. Vvedenie v vychislitelnuyu fiziku [Introduction to computational physics]. Moscow, MIPT Publ., 1994, 528p.
[14] McCracken D.D., Dorn W.S. Numerical Methods and Fortran Programming: with application in engineering and science. Wiley International Edition, second printing, 1967, 457 p.
[15] Hairer E., Norsett S.P., Wanner G. Solving Ordinary Differential Equations I. Nonstiff Problems. Berlin, Springer, second edition, 1993, 528 p.