Numerical and analytical plotting of periodic motion and investigating motion stability in the case of a symmetric satellite
Authors: Sukhov E.A., Bardin B.S.
Published in issue: #11(71)/2017
DOI: 10.18698/2308-6033-2017-11-1704
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
A specific case of motion of a solid dynamically symmetric satellite along a circular orbit in reference to the centre of mass is its hyperboloid precession. If the hyperboloid precession is stable, the equations of satellite motion allow for existence of periodic motion families that describe the oscillations of the satellite’s dynamical symmetry axis in the vicinity of the hyperboloid precession. It is possible to derive these families in the form of convergent series in powers of the small parameter, i.e. the oscillation amplitude. There exist two types of these motions: short-term and long-term. If the amplitude is not small, it is necessary to employ a numerical method in order to plot the motions. In the three-dimensional space of the problem parameters, the authors plotted the region where longterm motions exist that stem from the hyperboloid precession of a symmetric satellite. We deal with the cases of resonance being present and third order resonance being absent. We conducted a first-order investigation of the orbital stability problem for long-term motions. We provide the problem statement and the results of plotting the periodic motions analytically in the absence of resonances. We describe in brief the method for plotting the periodic solution families numerically. We present the results of numerical and analytical plotting of long-term solution families stemming from the hyperboloid precession in the vicinity of the resonance. We draw conclusions on the first-order orbital stability of said solutions for small amplitudes.
References
[1] Duboshin G.N. Byul. ITA AN SSSR - Bulletin of the Institute of Theoretical Astronomy of the USSR Academy of Sciences, 1960, vol. 7, no. 7, pp. 511-520.
[2] Kondurar V.T. Astronomicheskiy zhurnal - Astronomy Reports, 1959, vol. 36, no. 5, pp. 890-901.
[3] Beletskiy V.V. Dvizhenie sputnika otnositelno tsentra mass v gravitatsionnom pole [Satellite motion in a gravitational field in reference to the centre of mass]. Moscow, Lomonosov Moscow State University Publ., 1975, 308 p.
[4] Sokolskiy A.G., Khovanskiy S.A. Kosmicheskie issledovaniya - Cosmic Research, 1979, vol. 17, no. 2, pp. 208-217.
[5] Markeev A.P. Lineynye gamiltonovy sistemy i nekotorye zadachi ob ustoychivosti dvizheniya sputnika otnositelno tsentra mass [Linear Hamiltonian systems and certain stability problems for motion of a satellite in reference to its centre of mass]. Moscow, Izhevsk, Regular and Chaotic Dynamics Publ., Computer Research Institute Publ., 2009, 369 p.
[6] Chernousko F.L. Prikladnaya matematika i mekhanika - Journal of Applied Mathematics and Mechanics, 1964, vol. 28, no. 1, pp. 155-157.
[7] Markeev A.P., Bardin B.S. Celestial Mechanics and Dynamical Astronomy, 2003, vol. 85, no. 1, pp. 51-66.
[8] Bardin B.S. Monografias de la Real Academia De Ciencias. Actas de las VI Jornadas de Mecanica Celeste, 2004, no. 25, pp. 59-70.
[9] Markeev A.P. Prikladnaya matematika i mekhanika - Journal of Applied Mathematics and Mechanics, 1999, vol. 63, no. 5, pp. 757-769.
[10] Bardin B.S., Chekin A.M. Prikladnaya matematika i mekhanika - Journal of Applied Mathematics and Mechanics, 2009, vol. 73, no. 3, pp. 353-367.
[11] Bardin B.S. Regular and Chaotic Dynamics, 2007, vol. 12, no. 1, pp. 86-100.
[12] Bardin B.S. Prikladnaya matematika i mekhanika - Journal of Applied Mathematics and Mechanics, 2007, vol. 71, no. 6, pp. 976-988.
[13] Sukhov E.A., Bardin B.S. Inzhenernyy zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2016, no. 5. DOI: 10.18698/2308-6033-2016-5-1489
[14] Sukhov E.A., Bardin B.S. O periodicheskikh dvizheniyakh, rozhdayushchikhsya iz giperboloidalnoy pretsessii simmetrichnogo sputnika [On periodic motions stemming from hyperboloid precession of a symmetric satellite]. Tez. dokl. LIII Vseros. konf. po problemam dinamiki, fiziki chastits, fiziki plazmy i optoelektroniki [Proc. of the 53 rd Russian National Conference on the problems of dynamics, particle physics, plasma physics and optoelectronics]. Moscow, Peoples’ Friendship University of Russia Publ., 2017, 32 p.
[15] Deprit A., Henrard J. The Astronomical Journal, 1967, vol. 72, no. 2, pp. 158-172.
[16] Karimov S.R., Sokolskiy A.G. Metod prodolzheniya po parametram estestvennykh semeystv periodicheskikh dvizheniy gamiltonovykh sistem [A parameter-based continuation method for natural periodic motion families in Hamiltonian systems]. Preprint. Institute of Theoretical Astronomy of the USSR Academy of Sciences, 1990, no. 9, 32 p.
[17] Sokolskiy A.G., Khovanskiy S.A. Kosmicheskie issledovaniya - Cosmic Research, 1983, vol. 21, no. 6, pp. 851-860.
[18] Lara M., Pelaez J. Astronomy & Astro-physics, 2002, vol. 389, pp. 692-701.
[19] Lara M., Deprit A., Elipe A. Celestial Mechanics and Dynamical Astronomy, 1995, vol. 62, pp. 167-181.