Моделирование процесса многоуровневой фильтрации жидкого связующего в тканевом композите при RTM-методе изготовления
Авторы: Димитриенко Ю.И., Шпакова Ю.В., Богданов И.О., Сборщиков С.В.
Опубликовано в выпуске: #12(48)/2015
DOI: 10.18698/2308-6033-2015-12-1454
Раздел: Металлургия и материаловедение | Рубрика: Порошковая металлургия и композиционные материалы
Предложена математическая модель многоуровневой фильтрации жидкого связующего в тканевом композите при RTM-методе изготовления. С помощью этой модели описана фильтрация на двух структурных уровнях: на макроскопическом уровне движения жидкого связующего по каркасу композитной конструкции и на микроскопическом уровне в рамках отдельной ячейки периодичности тканевого материала. Для численного решения обеих трехмерных задач фильтрации использован метод конечных элементов. Представленные результаты численного моделирования процесса фильтрации жидкого связующего в тканевом материале позволили выявить характерные особенности движения связующего. Разработанная модель многоуровневой фильтрации может служить основой для оптимизации технологических процессов изготовления элементов конструкций из композиционных материалов при использовании RTM-метода изготовления.
Литература
[1] Гончаров В.А., Раскутин А.Е. Компьютерное моделирование процесса инфузии при изготовлении композитного арочного элемента. Тр. ВИАМ, 2015, № 7. doi: dx.doi.org/10.18577/2307-6046-2015-0-7-11-11 (дата обращения 16.11.2015).
[2] Гончаров В.А., Федотов М.Ю., Сорокин К.В., Раскутин А.Е. Моделирование стадии пропитки получения углепластиков на основе эпоксидных связующих для RTM- и VARTM-технологий. Справочник. Инженерный журнал, 2013, № 12, с. 24-28.
[3] Душин М.И., Хрульков А.В., Мухаметов Р.Р., Чурсова Л.В. Особенности изготовления изделий из ПКМ методом пропитки под давлением. Авиационные материалы и технологии, 2012, № 1, с. 18-26.
[4] Маскет М. Течение однородных жидкостей в пористой среде. Москва, Ижевск, НИЦ "Регулярная и хаотическая динамика", 2004, 628 с.
[5] Clifford K. Gas Transport in Porous Media. Theory and Applications of Transport in Porous Media. Vol. 20. Springer, 2006, 444 p.
[6] Coussy O. Mechanics and Physics of Porous Solids. John Wiley and Sons, Ltd., 2010, 281 p.
[7] De Boer R. Trends in Continuum Mechanics of Porous Media. Theory and Applications of Transport in Porous Media. Vol. 18. Springer, 2005, 279 p.
[8] Espedal M.S., Fasano A., Mikelic A. Filtration in Porous Media and Industrial Application. Springer, 2000, 218 p.
[9] Ingham D.B., Pop I. Transport Phenomena in Porous Media. Vol. 3. Elsevier Ltd., 2005, 476 p.
[10] Санчес-Паленсия Э. Теория колебаний и неоднородные среды. Москва, Мир, 1984, 472 с.
[11] Бахвалов Н.С., Панасенко Г.П. Осреднение процессов в периодических средах. Москва, Наука, 1984, 352 с.
[12] Bensoussan A. Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications. Vol. 5. North-Holland Publishing Company, 1978, 700 p.
[13] Бардзокас Д.И., Зобнин А.И. Математическое моделирование физических процессов в композиционных материалах периодической структуры. Москва, Едиториал УРСС, 2003, 376 с.
[14] Беляев А.Ю. Усреднение в задачах теории фильтрации. Москва, Наука, 2004, 200 с.
[15] Chen Z., Huan G., Ma Y. Computational Methods for Multiphase Flows in Porous Media. Society for Industrial and Applied Mathematics, 2006, 531 p.
[16] Dimitrienko Yu.I. Mechanics of Porous Media with Phase Transformations and Periodical Structures. Method of Asymptotic Averaging. European Journal of Mechanics, A/Solids, 1998, vol. 17, p. 305-319.
[17] Das D.B. Upscaling Multiphase Flow in Porous Media. From Pore to Core and Beyond. Springer, 2005, 257 p.
[18] Dimitrienko Yu.I., Dimitrienko I.D. Simulation of Local Transfer in Periodic Porous Media. European Journal of Mechanics, B/Fluids, 2013, no. 1, pp. 174-179.
[19] Димитриенко Ю.И., Левина А.И., Галицын А. Конечно-элементный анализ локальных газодинамических процессов в трехмерных пористых структурах. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2011, спец. выпуск, с. 50-66.
[20] Димитриенко Ю.И., Глазиков М.Л. Моделирование процессов фильтрации в периодических пористых средах. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2003, № 1, с. 59-71.
[21] Dimitrienko Yu.I. Dynamic Transport Phenomena in Porous Polymer Materials Under Impulse Thermal Effects. Journal of Transport in Porous Media, 1999, vol. 35, no. 2.
[22] Димитриенко Ю.И., Левина А.И., Боженик П. Конечно-элементное моделирование локальных процессов переноса в пористых средах. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2008, № 3, с. 90-104.
[23] Димитриенко Ю.И., Иванов М.Ю. Моделирование нелинейных динамических процессов переноса в пористых средах. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2008, № 1, с. 39-56.
[24] Dimitrienko Yu.I., Dimitrienko I.D. Simulation of Local Transfer in Periodic Porous Media. European Journal of Mechanics, B/Fluids, 2013, no. 1, pр. 174-179.
[25] Димитриенко Ю.И., Яковлев Д.О. Сравнительный анализ решений асимптотической теории многослойных тонких пластин и трехмерной теории упругости. Инженерный журнал: наука и инновации, 2013, вып. 12. URL: http://engjournal.ru/catalog/mathmodel/technic/899.html
[26] Димитриенко Ю.И., Сборщиков С.В., Соколов А.П., Шпакова Ю.В. Численное моделирование процессов разрушения тканевых композитов. Вычислительная механика сплошной среды. 2013, т. 6, № 4, с. 389-402. doi: 10.7242/1999-6691/2013.6.4.43 (дата обращения 03.11.2015).
[27] Димитриенко Ю.И., Соколов А.П., Шпакова Ю.В., Юрин Ю.В. Моделирование поверхностей прочности композитов на основе микроструктурного конечно-элементного анализа. Наука и образование. 2012, № 11. doi: 10.7463/1112.0496336 (дата обращения 03.11.2015).