Возможности моделирования проникания тел в грунтовые среды
5
Результаты численного моделирования.
На глубину и устой-
чивость проникания в песок оказывает влияние отношение разме-
ров диаметров кавитатора и проникающего тела [5]. При относи-
тельном диаметре кавитатора (по отношению к диаметру тела) ме-
нее 0,4 отмечается неустойчивое движение тела: криволинейность
траектории и разворот его относительно центра масс. По мере уве-
личения относительного диаметра кавитатора более 0,4 движение
тела становится устойчивым, но при этом наблюдается увеличение
сопротивления преграды.
Для определения влияния диаметра
d
к
кавитатора и длины
h
г.ч
его
головной части на сопротивление прониканию проведены расчеты
для ударников (рис. 1) с кавитаторами различных диаметров и длин.
Геометрические параметры проникающего тела представлены в
табл. 1. Масса ударников принималась равной 45 г, скорость встре-
чи — 800 м/с. Численное моделирование проводилось с использова-
нием программного комплекса Ansys Autodyn. Для моделирования
песка используется уравнение состояния Compaction EOS, которое
является модифицированным уравнением состояния Porous EOS для
пористых сред, но в отличие от него позволяет более точно задавать
кривые нагружения и разгрузки. В данном уравнении состояния
плотность не интерполируется между полностью сжатым и началь-
ным состояниями, вместо этого скорость звука задается как кусочно-
линейная функция плотности. Давление вычисляется по коэффици-
енту объ-емного сжатия и текущей плотности. Уравнение прочности
для песка MO Granular — модифицированная версия критерия
Друкера — Прагера, учитывающая все особенности сыпучих матери-
алов.
Таблица 1
Геометрические параметры проникающего тела
Номер
варианта
L
,
мм
h
г.ч
,
мм
D
,
мм
d
,
мм
d
к
, мм
l
к
, мм
l
к
/
d
к
1
80 35 14,5 10,5
4
0
0
2
4
5
1,25
3
4
10
2,5
4
6
0
0
5
6
8
1,25
6
6
16
2,5
При расчетах задавали следующие 10-точечные кусочно-задан-
ные зависимости: