Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

Единая математическая модель воспламенения и горения одиночных частиц…

Инженерный журнал: наука и инновации

# 6·2017 11

Unified mathematical model of ignition and combustion

of single particles of aluminum diboride

© P.V. Papyrin, A.V. Sukhov, D.A. Yagodnikov

Bauman Moscow State Technical University, Moscow, 105005, Russia

The study focuses on the unified mathematical model of ignition and burning of a single

particle of aluminum diboride in a gaseous oxidizing medium. It is assumed that particle

of aluminum diboride is an alloy of boron and aluminum, wherein the part of the surface

occupied by each of the elements is proportional to their mole fraction in the alloy, and

on the particle surface on the respective surfaces proportional to the mole fraction of

each element in the alloy there occur

competing reactions of aluminum and boron oxida-

tion. It is generally thought that between the particle and the environment there occurs

radiative and convective heat transfer. The model is based on the experimental depend-

ences of kinetics of oxidation and combustion reactions of single particles of boron and

aluminum. In our research we identified the ignition criteria of particles conglomerate

and obtained the dependences of ignition induction time and combustion time on the ini-

tial values of the ambient temperature and aluminum diboride particle diameter.

Keywords:

aluminum diboride, single particle, ignition, combustion,

competing reac-

tions, mathematical model

REFERENCES

[1]

Sorokin V.A., Yagodnikov D.A., Khomyakov I.I., Suchkov S.A., Sukhov A.V.

Nauka i obrazovanie — Science and Education

, 2014, no. 6.

DOI: 10.7463/0614.0713972

[2]

Yagodnikov D.A., Khomyakov I.I., Burkov A.S.

Vestnik MGTU im. N.E. Baumana.

Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical

University. Series Mechanical Engineering

, 2014, no. 3, pp. 101–109.

[3]

Yagodnikov D.A., Papyrin P.V., Sukhov A.V.

Nauka i obrazovanie — Science

and Education

, 2014, no. 12. DOI: 10.7463/1214.0739006

[4]

Zolotko A.N., Ushakova N.A., Demirova M.V.

Fizika aerodispersnykh sistem —

Physics of aerodisperse systems

, 2010, no. 47, pp. 91–99.

[5]

Zolotko A.N., Klyachko L.A.

Fizika goreniia i vzryva — Combustion, Explosion

and Shock Waves

, 1979, vol. 15, no. 3, pp. 3–10.

[6]

Gurevich M.A., Ozerov E.S., Yurinov A.A.

Fizika goreniia i vzryva —

Combustion, Explosion and Shock Waves

, 1978, vol. 14, no. 4, pp. 50–55.

[7]

King M.K. Boron Ignition and Combustion in Air-Augmented Rocket

Afterburners.

Combustion, Science and Technology

, 1972, vol. 5, no. 4,

pp. 155–164.

[8]

Vovchuk Ya.I., Zolotko A.N., Klyachko L.А.

Vremya goreniya chastits bora s

uchetom vliyaniya diffuzionnogo i kineticheskogo faktorov. Khimicheskaya fizika

protsessov goreniya i vzryva. Gorenie kondensirovannykh sistem

[Burning time

of boron particles with the influence of the diffusion factors and kinetic factors.

Chemical physics of combustion and explosion. Combustion of condensed

matter]. Chernogolovka, 1977, pp. 90–93.

[9]

Beksted M.V.

Fizika goreniia i vzryva — Combustion, Explosion and Shock

Waves

, 2005, vol. 41, no. 5, pp. 55–69.