Единая математическая модель воспламенения и горения одиночных частиц…
Инженерный журнал: наука и инновации
# 6·2017 11
Unified mathematical model of ignition and combustion
of single particles of aluminum diboride
© P.V. Papyrin, A.V. Sukhov, D.A. Yagodnikov
Bauman Moscow State Technical University, Moscow, 105005, Russia
The study focuses on the unified mathematical model of ignition and burning of a single
particle of aluminum diboride in a gaseous oxidizing medium. It is assumed that particle
of aluminum diboride is an alloy of boron and aluminum, wherein the part of the surface
occupied by each of the elements is proportional to their mole fraction in the alloy, and
on the particle surface on the respective surfaces proportional to the mole fraction of
each element in the alloy there occur
competing reactions of aluminum and boron oxida-
tion. It is generally thought that between the particle and the environment there occurs
radiative and convective heat transfer. The model is based on the experimental depend-
ences of kinetics of oxidation and combustion reactions of single particles of boron and
aluminum. In our research we identified the ignition criteria of particles conglomerate
and obtained the dependences of ignition induction time and combustion time on the ini-
tial values of the ambient temperature and aluminum diboride particle diameter.
Keywords:
aluminum diboride, single particle, ignition, combustion,
competing reac-
tions, mathematical model
REFERENCES
[1]
Sorokin V.A., Yagodnikov D.A., Khomyakov I.I., Suchkov S.A., Sukhov A.V.
Nauka i obrazovanie — Science and Education
, 2014, no. 6.
DOI: 10.7463/0614.0713972
[2]
Yagodnikov D.A., Khomyakov I.I., Burkov A.S.
Vestnik MGTU im. N.E. Baumana.
Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical
University. Series Mechanical Engineering
, 2014, no. 3, pp. 101–109.
[3]
Yagodnikov D.A., Papyrin P.V., Sukhov A.V.
Nauka i obrazovanie — Science
and Education
, 2014, no. 12. DOI: 10.7463/1214.0739006
[4]
Zolotko A.N., Ushakova N.A., Demirova M.V.
Fizika aerodispersnykh sistem —
Physics of aerodisperse systems
, 2010, no. 47, pp. 91–99.
[5]
Zolotko A.N., Klyachko L.A.
Fizika goreniia i vzryva — Combustion, Explosion
and Shock Waves
, 1979, vol. 15, no. 3, pp. 3–10.
[6]
Gurevich M.A., Ozerov E.S., Yurinov A.A.
Fizika goreniia i vzryva —
Combustion, Explosion and Shock Waves
, 1978, vol. 14, no. 4, pp. 50–55.
[7]
King M.K. Boron Ignition and Combustion in Air-Augmented Rocket
Afterburners.
Combustion, Science and Technology
, 1972, vol. 5, no. 4,
pp. 155–164.
[8]
Vovchuk Ya.I., Zolotko A.N., Klyachko L.А.
Vremya goreniya chastits bora s
uchetom vliyaniya diffuzionnogo i kineticheskogo faktorov. Khimicheskaya fizika
protsessov goreniya i vzryva. Gorenie kondensirovannykh sistem
[Burning time
of boron particles with the influence of the diffusion factors and kinetic factors.
Chemical physics of combustion and explosion. Combustion of condensed
matter]. Chernogolovka, 1977, pp. 90–93.
[9]
Beksted M.V.
Fizika goreniia i vzryva — Combustion, Explosion and Shock
Waves
, 2005, vol. 41, no. 5, pp. 55–69.