Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

И.М. Гришин, Е.А. Андреев, А.Р. Полянский, И.Е. Никитина

10

Инженерный журнал: наука и инновации

# 8·2017

Computing control action parameters for gas jet injection

into the expansion section of a nozzle

© I.M. Grishin, E.A. Andreev, A.R. Polyanskiy, I.E. Nikitina

Bauman Moscow State Technical University, Moscow, 105005, Russia

The study deals with methods of computing control force during rocket engine thrust vec-

toring by asymmetrically injecting gas into the expansion section of a supersonic nozzle.

This technique has a number of advantages, so there exists an interest in the methods that

make it possible to reliably estimate the efficiency of using this technique for thrust vec-

toring, to select geometric and mode parameters in advance and through this, to cut

down considerably on the volume of expensive experimental development testing. We

compared the results of calculations that used a semi-empirical method and the results of

a 3-dimensional computation to experimental data. We studied how the way of supplying

the injected gas affects the control force amplitude and the thrust loss through vectoring.

For designing power plants that comprise a supersonic controller nozzle, it is possible to

use the control action calculation methods considered and the data obtained.

Keywords:

rocket engine, control action, injection, mathematical modelling

REFERENCES

[1]

Volkov V.T., Yagodnikov D.A.

Issledovanie i stendovaya otrabotka raketnykh

dvigateley na tverdom toplive

[Investigation and development testing of solid

propellant rocket engines]. Moscow, BMSTU Publ., 2007, 296 p.

[2]

Vinitskiy A.M., Volkov V.T., Volkovitskiy I.G., Kholodilov S.V.

Konstruktsiya

i otrabotka RDTT

[Design and testing of solid propellant rocket engines].

Moscow, Mashinostroenie Publ., 1980, 230 p.

[3]

Kalugin V.T., Mordvintsev G.G., Popov V.M.

Modelirovanie protsessov

obtekaniya i upravleniya aerodinamicheskimi kharakteristikami letatelnykh

apparatov

[Modelling flow and aerodynamic property control processes in

aircraft]. Moscow, BMSTU Publ., 2011, 527 p.

[4]

Kalugin V.T.

Aerogazodinamika organov upravleniya poletom letatelnykh

apparatov

[Air and gas dynamics in aircraft flight controls]. Moscow, BMSTU

Publ., 2004, 686 p.

[5]

Volkov K.N., Emelyanov V.N.

Modelirovanie krupnykh vikhrey v raschete

turbulentnykh techeniy

[Modeling large-scale vortices in turbulent flow

computations]. Moscow, FIZMATLIT Publ., 2008 125 p.

[6]

Andreev A.E., Shmanenkov V.N.

Izvestia RAN, Mekhanika Zhidkosti i Gaza —

Fluid Dynamics

, 1975, no. 2, pp. 15–18.

[7]

Belov I.A., Isaev S.A.

Modelirovanie turbulentnykh techeniy

[Turbulent flow

modelling]. St. Petersburg, Ustinov Baltic State Technical University Publ., 2002,

108 p.

[8]

Ferziger J.H., Peric M.

Computational Methods for Fluid Dynamics

. Berlin,

Heidelberg, 2002, 426 p.

[9]

Antonov R.V. et al.

Organy upravleniya vektorom tyagi tverdotoplivnykh raket:

raschet, konstruktivnye osobennosti, eksperiment

[Thrust vector controls of

solid-propellant rockets: calculation, design specifics, experiments]. Moscow-

Izhevsk, Regular and Chaotic Dynamics Publ., 2006, 552 p.