Ф.А. Баучкин
10
Инженерный журнал: наука и инновации
# 9·2016
Future look of a high-temperature nuclear power unit
© F.A. Bauchkin
Bauman Moscow State Technical University, Moscow, 105005, Russia
The paper discusses some technical solutions allowing to implement a collisionless mode
with surface ionization in high-temperature thermionic nuclear power units and to for-
malize their future look. On the base of analysis we selected structural materials capable
of providing performance and required output parameters at increased temperatures of
electrodes. In particular, to provide the isothermal condition for the energy converter we
consider a structural configuration with the energy converter placed beyond the reactor
core. As a result, we obtain a perspective single-channel multi-element configuration of
the electro-generating unit, which considers disadvantages of both single-element con-
figuration and classic multi-element configuration. Besides, structural configuration of
thermionic electro-generating assembly with the external nuclear fuel placement, which
provides the simplicity of the design and the principle of modularity, is proposed. For
further development of the suggested design a tentative estimation using CFD-software
Star-CCM+ was carried out. It represents a static thermal numerical computation of
channel’s part with a length of 10 mm. Computation results are presented in the paper.
Keywords:
nuclear power unit, high-temperature thermionic unit, thermionic converter,
external placement, heat pipe, configuration, static thermal computation, future look.
REFERENCES
[1]
Kvasnikov L.A., Kaybyshev V.Z., Kalandarishvili A.G.
Rabochiye protsessy v
termoemissionnykh preobrazovatelyakh yadernykh energeticheskikh ustanovok
[Workflows in thermionic converters of nuclear power plants]. Moscow, MAI
Publ., 2001, 208 p.
[2]
Yarygin V.I.
Fizicheskiye osnovy termoemissionnogo preobrazovaniya energii.
Chast 1. Vvedeniye v spetsialnost
[Physical fundamentals of thermionic energy con-
version. Part 1: Introduction to Specialty]. Obninsk, SSC RF–IPPE, 2001, 78 p.
[3]
Klyucharev A.N., Mishakov V.G., Timofeyev N.A.
Vvedeniye v fiziku nizkotem-
peraturnoy plazmy
[Introduction to the low-temperature plasma physics]. Saint
Petersburg, Saint Petersburg State University Publ., 2008, 224 p.
[4]
Lendyel V.I., Navrotsky V.T., Sabad E.N.
Soviet Physics-Uspekhi (Advances in
Physical Sciences)
, 1987, no. 3, pp. 425.
[5]
Mondt D. Pikket V. Perspektivy termoemissionnykh reaktorov s vneshnim i
vnutrennim razmeshcheniyem goryuchego dlya sistem s elektroreaktivnymi
dvigatelyami [Prospects for thermionic reactors with internal and external
placement of fuel for the systems with electro-reactive engines].
Pryamoye
preobrazovaniye teplovoy energii v elektricheskuyu i toplivnyye element
[Direct
conversion of heat into electricity and fuel cells], 1971, no. 10, pp. 142.
[6]
Pawlik E.V., Phillips W.M. A Nuclear Electric Propulsion Vehicle for Planetary
Exploration.
AIAA Paper
76-1041.
[7]
Koenig D.R., Renken W.A., Salmi E.M. Heat Pipe Reactor for Space Applica-
tions.
AIAA Paper
77-491.
[8]
Mondt J.E., Stapfer C., Hsieh T.M. Nuclear Power Source for Electric Propul-
sion.
AIAA Paper
79-2088.
[9]
Evtikhin V.A., Chumanov A.N.
Kosmicheskaya yadernaya energeticheskaya
ustanovka
[Space nuclear power plant]. Patent 2129740 Russian Federation.
Published April 27, 1999.