Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

Ф.А. Баучкин

10

Инженерный журнал: наука и инновации

# 9·2016

Future look of a high-temperature nuclear power unit

© F.A. Bauchkin

Bauman Moscow State Technical University, Moscow, 105005, Russia

The paper discusses some technical solutions allowing to implement a collisionless mode

with surface ionization in high-temperature thermionic nuclear power units and to for-

malize their future look. On the base of analysis we selected structural materials capable

of providing performance and required output parameters at increased temperatures of

electrodes. In particular, to provide the isothermal condition for the energy converter we

consider a structural configuration with the energy converter placed beyond the reactor

core. As a result, we obtain a perspective single-channel multi-element configuration of

the electro-generating unit, which considers disadvantages of both single-element con-

figuration and classic multi-element configuration. Besides, structural configuration of

thermionic electro-generating assembly with the external nuclear fuel placement, which

provides the simplicity of the design and the principle of modularity, is proposed. For

further development of the suggested design a tentative estimation using CFD-software

Star-CCM+ was carried out. It represents a static thermal numerical computation of

channel’s part with a length of 10 mm. Computation results are presented in the paper.

Keywords:

nuclear power unit, high-temperature thermionic unit, thermionic converter,

external placement, heat pipe, configuration, static thermal computation, future look.

REFERENCES

[1]

Kvasnikov L.A., Kaybyshev V.Z., Kalandarishvili A.G.

Rabochiye protsessy v

termoemissionnykh preobrazovatelyakh yadernykh energeticheskikh ustanovok

[Workflows in thermionic converters of nuclear power plants]. Moscow, MAI

Publ., 2001, 208 p.

[2]

Yarygin V.I.

Fizicheskiye osnovy termoemissionnogo preobrazovaniya energii.

Chast 1. Vvedeniye v spetsialnost

[Physical fundamentals of thermionic energy con-

version. Part 1: Introduction to Specialty]. Obninsk, SSC RF–IPPE, 2001, 78 p.

[3]

Klyucharev A.N., Mishakov V.G., Timofeyev N.A.

Vvedeniye v fiziku nizkotem-

peraturnoy plazmy

[Introduction to the low-temperature plasma physics]. Saint

Petersburg, Saint Petersburg State University Publ., 2008, 224 p.

[4]

Lendyel V.I., Navrotsky V.T., Sabad E.N.

Soviet Physics-Uspekhi (Advances in

Physical Sciences)

, 1987, no. 3, pp. 425.

[5]

Mondt D. Pikket V. Perspektivy termoemissionnykh reaktorov s vneshnim i

vnutrennim razmeshcheniyem goryuchego dlya sistem s elektroreaktivnymi

dvigatelyami [Prospects for thermionic reactors with internal and external

placement of fuel for the systems with electro-reactive engines].

Pryamoye

preobrazovaniye teplovoy energii v elektricheskuyu i toplivnyye element

[Direct

conversion of heat into electricity and fuel cells], 1971, no. 10, pp. 142.

[6]

Pawlik E.V., Phillips W.M. A Nuclear Electric Propulsion Vehicle for Planetary

Exploration.

AIAA Paper

76-1041.

[7]

Koenig D.R., Renken W.A., Salmi E.M. Heat Pipe Reactor for Space Applica-

tions.

AIAA Paper

77-491.

[8]

Mondt J.E., Stapfer C., Hsieh T.M. Nuclear Power Source for Electric Propul-

sion.

AIAA Paper

79-2088.

[9]

Evtikhin V.A., Chumanov A.N.

Kosmicheskaya yadernaya energeticheskaya

ustanovka

[Space nuclear power plant]. Patent 2129740 Russian Federation.

Published April 27, 1999.