К.А. Валуев, А.С. Чернятин
10
Evaluation of the effect of compression of the holes of the
cladding of aircrafts on strength
©
K.A. Valuev, A.S. Chernyatin
Bauman Moscow State Technical University, Moscow, 105005, Russia
The article analyzes the impact of the holes compression process in the riveted joint in
the sheathing of aircraft on the strength. Optimal amount of compression at which the
generated residual stress field leads to a significant reduction of stress at operating loads
is determined. For this purpose, using ANSYS Workbench we created a parametric finite
element model of an uniaxial loaded plate (plating) with central hole, i.e. compression
spherical stamp. This model provides a comprehensive study of stress-strain state in the
vicinity of the hole. Comparative calculations of the plate without any preliminary
compression of the hole and with compression showed that at certain level of
compression we can achieve reduction of maximum stresses. The work also shows the
influence of the radius on the stamp.
Keywords:
stamping, elastoplastic material deformation, contact problem, stress strain
state, residual stress, safety factor.
REFERENCES
[1]
Vishnyakov M.A., Vasyukov Yu.A.
Konstruktorsko-tekhnologicheskie metody
obespecheniya kachestva izdeliy mashinostroeniya
[Design and technological
methods to ensure the quality of engineering products]. Samara, Samara State
Aerospace University, 2005, pp. 24–28.
[2]
Roudzey G.F.
Obosnovanie putei povysheniya ustalostnoi dolgovechnosti
zaklepochnykh i svarnykh soedinenii aviatsionnykh konstruktsii tekhnologiches-
kimi metodami
[Justification of the ways of increasing the fatigue life of riveted
and welded joints in aircraft structures engineering methods]. Cand. Sci.
(Engineering) Thesis. Moscow, 2007.
[3]
Kogaev V.P., Makhutov N.A., Gusenkov A.P.
Raschet dealei mashin i
konstruktsii na prochnost i dolgovechnost
[Calculation of machine details and
structures for strength and durability]. Handbook. Moscow, Mashinostroenie,
1985, 224 p.
[4]
Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace material science].
In:
Vse materialy. Entsiklopedicheskii spravochnik
[All materials. Encyclopedic
reference], 2008, no. 3, pp. 28–29.
[5]
Kablov E.N.
Osnovnye napravleniya razvitiya materialov dlya aviakosmicheskoi
tekhniki XXI veka
[The main directions of development of materials for
aerospace technology of the XXI century]. Moscow, 1999, pp. 4–6.
[6]
Demidov S.P.
Teoriya uprugosti
[Theory of elasticity]. Moscow, Vysshaya
shkola Publ., 1979, pp. 302–304.
[7]
Feodosiev V.I.
Soprotivlenie materialov
[Strength of materials]. 10
th
ed.
Moscow, BMSTU Publ., 1999, pp. 352–353.
[8]
Alyuminii D16
[D16 Aluminum]. Available at: http://metallicheckiy-
portal.ru/marki_metallov/alu/D16(accessed 11.06.2015).
[9]
Alyuminievye, titanovye, magnievye i berilievye splavy
[Aluminum, titanium,
magnesium and beryllium alloys]. Available at:
http://viam.ru/sites/default/files/uploads/booklets/pdf/alumin_2012.pdf (accessed 11.06.2015).