Background Image
Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

К.А. Валуев, А.С. Чернятин

10

Evaluation of the effect of compression of the holes of the

cladding of aircrafts on strength

©

K.A. Valuev, A.S. Chernyatin

Bauman Moscow State Technical University, Moscow, 105005, Russia

The article analyzes the impact of the holes compression process in the riveted joint in

the sheathing of aircraft on the strength. Optimal amount of compression at which the

generated residual stress field leads to a significant reduction of stress at operating loads

is determined. For this purpose, using ANSYS Workbench we created a parametric finite

element model of an uniaxial loaded plate (plating) with central hole, i.e. compression

spherical stamp. This model provides a comprehensive study of stress-strain state in the

vicinity of the hole. Comparative calculations of the plate without any preliminary

compression of the hole and with compression showed that at certain level of

compression we can achieve reduction of maximum stresses. The work also shows the

influence of the radius on the stamp.

Keywords:

stamping, elastoplastic material deformation, contact problem, stress strain

state, residual stress, safety factor.

REFERENCES

[1]

Vishnyakov M.A., Vasyukov Yu.A.

Konstruktorsko-tekhnologicheskie metody

obespecheniya kachestva izdeliy mashinostroeniya

[Design and technological

methods to ensure the quality of engineering products]. Samara, Samara State

Aerospace University, 2005, pp. 24–28.

[2]

Roudzey G.F.

Obosnovanie putei povysheniya ustalostnoi dolgovechnosti

zaklepochnykh i svarnykh soedinenii aviatsionnykh konstruktsii tekhnologiches-

kimi metodami

[Justification of the ways of increasing the fatigue life of riveted

and welded joints in aircraft structures engineering methods]. Cand. Sci.

(Engineering) Thesis. Moscow, 2007.

[3]

Kogaev V.P., Makhutov N.A., Gusenkov A.P.

Raschet dealei mashin i

konstruktsii na prochnost i dolgovechnost

[Calculation of machine details and

structures for strength and durability]. Handbook. Moscow, Mashinostroenie,

1985, 224 p.

[4]

Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace material science].

In:

Vse materialy. Entsiklopedicheskii spravochnik

[All materials. Encyclopedic

reference], 2008, no. 3, pp. 28–29.

[5]

Kablov E.N.

Osnovnye napravleniya razvitiya materialov dlya aviakosmicheskoi

tekhniki XXI veka

[The main directions of development of materials for

aerospace technology of the XXI century]. Moscow, 1999, pp. 4–6.

[6]

Demidov S.P.

Teoriya uprugosti

[Theory of elasticity]. Moscow, Vysshaya

shkola Publ., 1979, pp. 302–304.

[7]

Feodosiev V.I.

Soprotivlenie materialov

[Strength of materials]. 10

th

ed.

Moscow, BMSTU Publ., 1999, pp. 352–353.

[8]

Alyuminii D16

[D16 Aluminum]. Available at: http://metallicheckiy-

portal.ru/marki_metallov/alu/D16

(accessed 11.06.2015).

[9]

Alyuminievye, titanovye, magnievye i berilievye splavy

[Aluminum, titanium,

magnesium and beryllium alloys]. Available at:

http://viam.ru/sites/default/files/

uploads/booklets/pdf/alumin_2012.pdf (accessed 11.06.2015).