Определение спектрально-энергетических порогов лазерной абляции под действием ультракоротких лазерных импульсов в вакууме - page 10

Е.Ю. Локтионов, Ю.С. Протасов, Ю.Ю. Протасов
10
electron microscope.
Applied Physics A
:
Materials Science & Processing
,
2008, vol. 91, no. 2, pp. 219–222.
[19] Tallents G.J., Edwards M.H., Whittaker D.S., Mistry P., Pert G.J., Rus B.,
Mocek T., Kozlova M., Polan J., Praeg A., Stupka M., Homer P. X-ray lasers as
probes to measure plasma ablation rates.
Soft X-Ray Lasers and Applications
VII
. San Diego, CA, USA, SPIE, 2007, pp. 67020H-10.
[20] Sinko J. Vaporization and shock wave dynamics for impulse generation in laser
propulsion. Dis. Ph.D. Hunstsville, 2008, 249 p.
[21] Kautek W., Kruger J., Lenzner M., Sartania S., Spielmann C., Krausz F. Laser
ablation of dielectrics with pulse durations between 20 fs and 3 ps.
Applied
Physics Letters
, 1996, vol. 69, no. 21. pp. 3146–3148.
[22] Mitra A., Thareja R.K. Determination of laser ablation threshold of Teflon at
different harmonics of Nd:YAG laser using photothermal deflection technique.
Journal of Materials Science
, 1999. vol. 34, no. 3. pp. 615–619.
[23] Torrisi L., Borrielli A., Margarone D. Study on the ablation threshold induced
by pulsed lasers at different wavelengths.
Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms
,
2007, vol. 255, no. 2. pp. 373–379.
[24] Singh J.P., Thakur S.N. (eds.).
Laser-Induced Breakdown Spectroscopy
.
Boston: Elsevier, 2007, 454 p.
[25] Stauter C., Gerard P., Fontaine J. Shock wave generated during laser ablation.
High-Power Laser Ablation
. Santa Fe, NM, USA, SPIE, 1998, pp. 961–970.
[26] Porneala C., Willis D.A. Time-resolved dynamics of nanosecond laser-induced
phase explosion.
Journal of Physics D: Applied Physics
, 2009, vol. 42, no. 15.
pp. 155503.
[27] Sinko J., Mukundarajan V., Porter S., Kodgis L., Kemp C., Lassiter J., Lin J.,
Pakhomov A.V. Time-resolved force and ICCD imaging study of TEA CO2
laser ablation of ice and water.
High-Power Laser Ablation VI
. Taos, NM,
USA, SPIE, 2006, p. 626131–12.
[28] Giao M.A.P., Rodrigues N.A.S., Riva R., Schwab C. PVDF sensor in laser
ablation experiments.
Review of Scientific Instruments
, 2004, vol. 75, no. 12,
pp. 5213–5215.
[29] Pakhomov A.V., Gregory D.A., Thompson M.S. Specific impulse and other
characteristics of elementary propellants for ablative laser propulsion.
AIAA
Journal
, 2002, vol. 40, no. 5, pp. 947–952.
[30] Phipps C., Luke J., Funk D., Moore D., Glownia J., Lippert T. Laser impulse
coupling at 130 fs.
Applied Surface Science
, 2006, vol. 252, no. 13, pp. 4838–
4844.
[31] Morozov A.A. Thermal model of pulsed laser ablation: back flux contribution.
Applied Physics A: Materials Science & Processing
, 2004, vol. 79, no. 4, pp.
997–999.
[32] Kirkwood S.E., van Popta A.C., Tsui Y.Y., Fedosejevs R. Single and multiple
shot near-infrared femtosecond laser pulse ablation thresholds of copper.
Applied Physics A: Materials Science & Processing
, 2005, vol. 81, no. 4. pp.
729–735.
[33] Bonse J., Wiggins S.M., Solis J., Sturm H., Urech L., Wokaun A., Lippert T.
Incubation behaviour in triazenepolymer thin films upon near-infrared
femtosecond laser pulse irradiation.
Journal of Physics: Conference Series
,
2007, vol. 59, pp. 105–111.
1,2,3,4,5,6,7,8,9 11,12
Powered by FlippingBook