Rope system designing for multi-link solar batteries disclosure under uncertainty
Authors: Bushuev A.Yu.
Published in issue: #1(61)/2017
DOI: 10.18698/2308-6033-2017-1-1583
Category: Power, Metallurgic and Chemical Engineering | Chapter: Hydraulic Machines and Hydropneumatic units
Currently, not enough attention is paid to the flexible solar batteries disclosure systems. This paper deals with mathematical methods for designing a rope disclosure system. Under flexible system for disclosing the multi-link solar battery structure we mean such a construction that adopts all the restrictions at the performance stage, provided that the uncertain parameters may take any value from the uncertainty region. Uncertainty is the moment of resistance between the multi-link design links defined by friction in the joints and the harness resistance. The purpose of the system construction is to provide a consistent units fixation from the last link to the first. Basing on the proposed mathematical model we calculated additional angles rotation of the units, caused by the elastic ropes synchronization system. Due to impossibility of controlling the resistance moments the operating forces in the cables can be varied within certain limits. The research task is to determine the pretension cables synchronization system for ensuring the disclosure system performance conservation. To solve the problem, we use a method of approximating the outside.
References
[1] Bakunin D.V., Borzykh S.V., Ososov N.S., Schiblev Yu.N. Matematicheskoe modelirovanie - Mathematical Models and Computer Simulations, 2004, vol. 16, no. 6, pp. 86-92.
[2] Kuznetsova A.O. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva - Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva (VestnikSibGAU), 2005, no. 3, pp. 135-138.
[3] Ilyasova I.G. Vestnik Samarskogo Gosudarstvennogo Aehrokosmicheskogo Universiteta im. akademika S.P. Koroleva - Journal "Vestnik of the Samara State Aerospace University", 2012, no. 4 (35), pp. 88-93.
[4] Krylov A.V. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie - Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2011, no. 1, pp. 106-111.
[5] Yudintsev V.V. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal Polet - Russian scientific and technical journal Polet (Flight), 2012, no. 5, pp. 28-33.
[6] Panichkin V.I. Izvestiya AN SSSR. MTT - Mechanics of Solids. A Journal of the Russian Academy of Sciences, 1992, no. 4, pp. 183-190.
[7] Yudintsev V.V. Dinamika sistem tverdykh tel [Dynamics of systems of solids]. Samara University Publ., 2008, 115 p.
[8] Featherstone R. Rigid Body Dynamics Algorithms. Springer Science, Business Media, LLC Publ., 2008, 272 p.
[9] Aslanov V., Kruglov G., Yudintsev V. Newton-Euler equations of multibody systems with changing structures for space applications. Acta Astronautica Journal, Elsevier Publ., 2011. DOI: 10.1016/j.actaastro.2010.11.013
[10] Mengali G., Salvetti A., Specht B. Multibody Analysis of Solar Array Deployment using Flexible Bodies. Universita di Pisa, Facolta di Ingegneria Corso di Laurea in IngegneriaAerospaziale Publ., 2007.
[11] Bushuev A.Yu., Farafonov B.A. Matematicheskoe modelirovanie i chislennye metody - Mathematical Modeling and Computational Methods, 2014, no. 2 (2), pp. 101-114.
[12] Bushuev A.Yu., Farafonov B.A. Inzhenerny zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2015, no. 7 (43). DOI: 10.18698/2308-6033-2015-7-1431
[13] Ostrovsky G.M., Volin Yu.M. Tekhnicheskie sistemy v usloviyakh neopredelennosti [Technical systems in conditions of uncertainty]. Moscow, BINOM, Laboratoriya znaniy Publ., 2012, 320 p.
[14] Efanov A.M., Kovalevsky V.P. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines]. Orenburg State University Publ., 2004, 267 p.
[15] Ostrovsky G.M., Ziyatdinov N.N., Lapteva T.V. Optimizatsya tekhnicheskikh system [Optimization of technical systems]. Moscow, KNORUS Publ., 2012, 432 p.
[16] Maine P.Q., Polak E., Traham R. An Outer Approximation Algorithm for Computer-Aided Design Problem. Journal of Optimization Theory and Applications, 1979, vol. 28, pp. 331-351.
[17] Kelley C.T. Iterative methods for optimization. North Carolina State University Publ., 1999, 180 p.