Features of the structure of the titanium alloy VT6 surface layer after deforming cutting and subsequent thermochemical treatment
Authors: Keltsieva I.A., Vasilev S.G., Simonov V.N., Degtyareva A.G., Smirnov A.E.
Published in issue: #2(74)/2018
DOI: 10.18698/2308-6033-2018-2-1733
Category: Metallurgy and Science of Materials | Chapter: Science of Materials in Mechanical Engineering
The article considers the effect of preliminary processing by deforming cutting (DC) on the thickness, structure and hardness of the strengthened diffusion layer during the subsequent nitriding and oxidation of the titanium alloy VT6. It is found that the temperature of the phase transition is exceeded when obtaining the finned macrostructures by deforming cutting due to intense mechanical and thermal effects. Subsequent thermochemical treatment of macrostructures obtained by DC results in forming the strengthened layer along the entire perimeter of the rib. It is shown that the most effective method of thermochemical treatment for macrostructures obtained by DC is oxidation, since a nearly twofold increase in the thickness of the strengthened layer has been achieved as well as greater hardness with a much shorter processing time
References
[1] Lutjering G., Williams J.C. Titanium. Berlin, Heidelberg, Springer-Verlag, 2007, р. 43.
[2] Zwicker U. Titan und Titanleigerungen. Berlin, Springer-Verlag, 1974, 510 p. [In Russ.: Zwicker U. Titan i ego splavy. Moscow, Metallurgiya Publ., 1979, 512 p.].
[3] Illarionov A.G., Popov A.A. Tekhnologicheskie i ekspluatatsionnye svoystva titanovykh splavov [Processing behavior and operational properties of titanium alloys]. Yekaterinburg, UFU Publ., 2014, 136 p.
[4] Vorobyeva G.A., Skladnova E.E., Erofeev V.K. Konstruktsionnye stali i splavy [Structural steels and alloys]. Moscow, NITs INFRA-M Publ., 2016, 440 p.
[5] Vulf B.K. Termicheskaya obrabotka titanovykh splavov [Heat treatment of titanium alloys]. Moscow, Metallurgiya Publ., 1969, 374 p.
[6] Kolachev B.A., Elagin V.I., Livanov V.A. Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov [Metal science and heat treatment of non-ferrous metals and alloys]. Moscow, MISIS Publ., 1999, 416 p.
[7] Chechulin B.B., Hesin Yu.D. Tsiklicheskaya i korrozionnaya prochnost titanovykh splavov [Cyclic and corrosion strength of titanium alloys]. Moscow, Metallurgiya Publ., 1987, 208 p.
[8] Paul A., Divinski S. Handbook of Solid State Diffusion: Volume 1: Diffusion Fundamentals and Techniques. Elsevier, 2017, 548 p.
[9] Zoubkov N.N. (РФ), Ovtchinnikov A.I. (РФ). Method and Apparatus Producing a Surface with Alternating Ridges and Depressions. Pat. 5775187 USA, Int. Cl. B23B 17/00. Appl. no. 545640, 1998.
[10] Zubkov N.N., Ovchinnikov A.I., Vasiliev S.G. et al. Sposob uprochneniya poverkhnosti detail [Method for hardening the surface of a part]. Patent RF no. 2015202, 1994.
[11] Zubkov N.N., Vasil'ev S.G., Poptsov V.V. New Method of Quench Surface Turning. Solid State Phenomena, 2017, vol. 265, pp. 696–701.
[12] Zubkov N.N., Vasilyev S.G. Uprochnyayuschie tekhnologii i pokrytiya —Strengthening Technologies and Coatings, 2013, no. 8, pp. 3–9.
[13] Zubkov N.N., Vasilyev S.G., Poptsov V.V. Sposob poverkhnostnogo zakalochnogo uprochneniya rezhusche-deformiruyuschim instrumentom [Method of surface quench hardening by a cutting-deforming tool]. Patent RF no. 2556897. IPC: C21D 8/00. Appl. 21.01.2014, Publ. 22.07.2015, Bul. no. 20.
[14] Zubkov N., Poptsov V., Vasiliev S. Surface Hardening by Turning without Chip Formation. Jordan Journal of Mechanical and Industrial Engineering, 2017, vol. 11, no. 1, pp. 13–19.
[15] Panayoti T.A. Fizika i khimiya obrabotki materialov — Physics and Chemistry of Materials Treatment, 2003, no. 4, pp. 70–78.
[16] Panin S.V., Kolgachev A.E., PochivalovYu.I., Panin V.E., Goryacheva I.G. Fizicheskaya mezomekhanika — Physical Mesomechanics, 2005, vol. 8, pp. 101–104.