Numerical simulation of composite material thermal expansion by homogenization method
Authors: Dimitrienko Yu.I., Gubareva E.A., Sborshikov S.V.
Published in issue: #12(48)/2015
DOI: 10.18698/2308-6033-2015-12-1452
Category: Metallurgy and Science of Materials | Chapter: Powder Metallurgy and Composite Materials
The article considers a variant of the asymptotic homogenization method for calculation of effective thermal expansion coefficients of composite materials with thermoelastic properties. We formulate problems of local thermoelasticity over a periodicity cell of composites. A variational formulation of the thermoelasticity problem over a periodicity cell is proposed. A finite element method for computational solving of these problems of thermoelasticity is applied. For software implementation of the finite element method we use the software package developed by the Scientific and Educational Center of the BMSTU. We also give examples of numerical solution of the local problems of thermoelasticity for composites based on ceramic fibers and the polymer matrix. Effective coefficients of thermal expansion for composite materials with spatial arrangement of ceramic fibers and a polymer matrix were calculated for different temperatures. We show that processes of thermal decomposition of polymer matrix result in nonmonotonic dependence of the thermal expansion coefficient on temperature. The proposed algorithm allows to calculate the thermal expansion coefficients for composites with almost any structures of fiber reinforced matrices undergoing physicochemical transformations at high temperatures. Unlike a large number of the well-known approximate methods for calculating thermal expansion coefficients the proposed method allows to obtain the mathematically accurate values for these coefficients.
References
[1] Christensen R.M. Mechanics of Composite Materials. Wiley-Interscience, New York, 1979, 348 p. [In Russian: Christensen R.M. Vvedenie v mekhaniku kompozitov. Moscow, Mir Publ., 1982, 336 p.].
[2] Tarnopolskiy Yu.M., Zhigun I.G., Polyakov V.A. Prostranstvenno armirovannye kompozitsionnye materialy [Spatially Reinforced Composite Materials]. Moscow, Mashinostroenie Publ., 1987, 224 p.
[3] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Y. Nauka i obrazovanie: electronnyy nauchno-tekhnicheskiy zhurnal - Science and Education: Electronic Scientific and Technical Journal, 2015, no. 2, pp. 197-215.
[4] Zhiguo Ran, Ying Yan, Jianfeng Li, Zhongxing Qi, Lei Yang. Chinese Journal of Aeronautics, October 2014, vol. 27, iss. 5, pp. 1180-1187.
[5] Z. Haktan Karadeniz, Dilek Kumlutas. Composite Structures, March 2007, vol. 78, iss. 1, pp. 1-10.
[6] Rupnowskia P., Gentza M., Sutterb J.K., Kumosaa M. Composites Part A: Applied Science and Manufacturing, March 2005, vol. 36, iss. 3, pp. 327-338.
[7] Bakhvalov N.S., Panasenko G.P. Homogenisation: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Springer Publ., 1989, 352 p. [In Russian: Bakhvalov N.S., Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh. Moscow, Nauka Publ., 1984, 352 p.].
[8] Sanchez-Palencia E. Non-homogeneous media and vibration theory. Lecture Notes in Physics. Berlin, Springer Publ., 1980, vol. 127, 398 p. [In Russian: Neodnorodnye sredy i teoriya kolebaniy. Moscow, Mir Publ., 1984].
[9] Pobedrya B.E. Mekhanika kompozitsionnykh materialov [Mechanics of Composite Materials]. Moscow, MGU Publ., 1984, 352 p.
[10] Dimitrienko Yu.I., Kashkarov A.I. Vestnic MGTU im. N.E. Baumana. Seria Estestvennye nauki - Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2002, no. 2, pp. 95-108.
[11] Dimitrienko Yu.I., Sborshchikov S.V., Belenovskaya Yu.V., Aniskovich V.A., Perevislov S.N. Nauka i obrazovanie: electronnyy nauchno-tekhnicheskiy zhurnal - Science and Education: Electronic Scientific and Technical Journal, 2013, no. 11. doi: 10.7463/1113.0659438
[12] Dimitrienko Yu.I., Yakovlev N.O., Erasov V.S., Fedonuk N.N., Sborshchikov S.V., Gubareva E.A., Krylov V.D., Grigoryev M.M., Prozorovskiy A.A. Kompozity i nanostruktury - Composites and Nanostructures, 2014, vol. 6, no. 1, pp. 32-48.
[13] Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V., Fedonuk N.N. Modeling of viscoelastic properties of laminated fibrous polymer composite materials. Science and Education: Electronic Scientific and Technical Journal, 2014, no. 11. doi: 10.7463/1113.0659438
[14] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V. Matematicheskoe modelirovanie i chislennye menody - Mathematical modeling and Numerical Methods, 2014, no. 1, pp. 36-57.
[15] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Vol. 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Fundamentals of Solid Mechanics]. Moscow, BMSTU Publ., 2013, vol. 4, 624 p.
[16] Dimitrienko Yu.I. Tenzornoye Ischislenie [Calculus of Tensors]. Moscow, Vysshaya shkola Publ., 2001, 576 p.
[17] Dimitrienko Yu.I. Composites Science and Technology, 1999, vol. 59, no. 7, pp. 1041-1053.
[18] Dimitrienko Yu.I. International Journal of Engineering Science, 1997, vol. 35, no. 1, pp. 15-31.