Change of right ascension of the ascending node of medium Earth orbits with constant semi-major axis and different eccentricity
Authors: Ivanov S.G., Grishko D.A., Baranov A.A.
Published in issue: #9(153)/2024
DOI: 10.18698/2308-6033-2024-9-2383
Category: Mechanics | Chapter: Theoretical Mchanics, Machine Dynamics
The paper presents the results of studying the energy costs required to correct the Right Ascension of the Ascending Node (RAAN) of the orbit of an object initially located at the operation altitudes of GLONASS and GPS global navigation satellite systems. Two types of problems are considered. In the first case, the rotation of the plane of motion is performed for a family of elliptical orbits with a constant semi-major axis, while the eccentricity may vary due to gravitational perturbations from the Moon and the Sun. In the second case, near-circular orbits with the same values of the semi-major axes are studied, and the transfer of an object to another operating plane with the same inclination is considered using a drift orbit with a different period. The research methods are based on the basic principles of spherical trigonometry and the theory of spacecraft manoeuvring. It is shown that the lowest cost of orbital plane orientation correction is achieved at large eccentricity values when the apocentre position coincides with the intersection points of the initial and final orbits. If the eccentricity value is small, the introduction of a near-circular drift orbit below/above the object's operating altitude, leads to a decrease in the characteristic velocity required to change the RAAN compared to impulse correction. The greatest effect is achieved when the orbit plane is to be rotated in the direction of the natural precession of the RAAN. The choice of the parameters of the drift orbit itself deserves special attention.
The study was supported by a grant from the Russian Science Foundation
No. 23-29-00419, https://rscf.ru/project/23-29-00419/
EDN MWTRTB
References
[1] Pardini C., Anselmo L. Effects of the deployment and disposal of mega-constellations on human spaceflight operations in low LEO. J. Space Safety Eng., 2022, no. 9, pp. 274–279. https://doi.org/10.1016/j.jsse.2022.03.001
[2] Satellite catalog. Available at: http://www.celestrak.com/satcat/search.asp (accessed June 1, 2024).
[3] Jenkin A.B., McVey J.P., Peterson G.E., Sorge M.E. Analysis of ODMSP-compliant near-circular GPS disposal orbits and resulting long-term collision risk. Journal of Space Safety Engineering, 2022, no. 9 (3), pp. 427–439. https://doi.org/10.1016/j.jsse.2022.06.003
[4] Domínguez-González R., Sánchez-Ortiz N., Francesco C. et al. Disposal strategies analysis for MEO orbits. In: Proceedings of the International Astronautical Congress, 2013, Paper ID: IAC-13.A6.2.5.x19061.
[5] Afanasyeva T.I., Gridchina T.A, Kolyuka Yu.F., Lavrentiev V.G. Vybor orbit zakhoroneniya dlya krupnorazmernogo kosmicheskogo musora i issledovanie ikh dolgovremennoy evolyutsii v raznykh oblastyakh okolozemnogo prostranstva [Selection of disposal orbits for large-size space debris and study of their long-term evolution in different regions of the near-Earth space]. In: Sbornik trudov konferentsii “Kosmicheskiy musor: fundamentalnye i prakticheskie aspekty ugrozy” [Proceedings of the conference “Space Debris: Fundamental and Practical Aspects of the Threat”]. Moscow, IKI RAN Publ., 236 p.
[6] Chao C.-C. Applied orbit perturbation and maintenance. The Aerospace Press, El Segundo, California, 2005, 297 p.
[7] Kuznetsov E.D., Avvakumova E.A. Dynamical evolution of space debris in the vicinity of GNSS regions. Acta Astronautica, 2018, vol. 158, pp. 140–147. https://doi.org/10.1016/j.actaastro.2018.02.001
[8] ISO 24113:2019(E), Space Systems — Space Debris Mitigation Requirements. Impl. 2019 – 07, ISO Central Secretariat, Geneva, 2019, p. 13.
[9] ISO 26872:2019 (E), Space systems — Disposal of satellites operating at geosynchronous altitude. Impl. 2019 – 07, ISO Central Secretariat, Geneva, 2019, p. 46.
[10] U.S. Government Orbital Debris Mitigation Standard Practices, November 2019 Update. Available at: https://orbitaldebris.jsc.nasa.gov/library/usg_orbital_debris_mitigation_standard_practices_november_2019.pdf (accessed January 6, 2022).
[11] Opromolla R., Grishko D. et al. Future in-orbit servicing operations in the space traffic management context. Acta Astronautica, 2024, vol. 220, pp. 469–477. https://doi.org/10.1016/j.actaastro.2024.05.007
[12] Baranov A.A. Manevrirovanie kosmicheskikh apparatov v okrestnosti krugovoy orbity [Spacecraft manoeuvring in vicinity of the near-circular orbit]. Moscow, Sputnik+ Publ., 2022.
[13] Elyasberg P.E. Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli [Introduction to the theory of flight of the artificial Earth satellites]. Moscow, Nauka Publ., 1965, 539 p.
[14] Baranov A.A., Baranov A.A. (Jr.). Algoritm rascheta parametrov manevrov formirovaniya sputnikovykh sistem [The algorithm for calculating the parameters of maneuvers of formation of satellite systems]. Kosmicheskie issledovaniya — Cosmic Research, 2009, vol. 47, no. 3, pp. 256–262.
[15] Baranov A.A., Grishko D.A., Mayorova V.I. Issledovaniye zatrat kharakteristicheskoy skorosti, neobkhodimoy dlya obsluzhivaniya i vospolneniya sputnikovykh sistem na krugovykh orbitakh [Research of characteristic velocity consumption required to maintain and replenish satellite constellations at the circular orbits]. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, iss. 3 (15). DOI: 10.18698/2308-6033-2013-3-642
[16] Grishko D.A. Issledovaniye skhem obleta obyektov krupnogabaritnogo kosmicheskogo musora na nizkikh orbitakh. Dis. … kand. fiz.-mat. nauk [Study of low orbit large space debris flyby schemes. Diss. Cand. Sc. (Phys.-Math.)]. Moscow, Institut Prikladnoy Matematiki im. M.V. Keldysha RAN, 2018. https://doi.org/keldysh.ru/council/1/2018-grishko/diss.pdf