Jacobi stability analysis in regard to the Lorenz dynamical system
Authors: Shkapov P.M., Sulimov V.D., Sulimov A.V.
Published in issue: #7(151)/2024
DOI: 10.18698/2308-6033-2024-7-2368
Category: Mechanics | Chapter: Theoretical Mchanics, Machine Dynamics
The paper considers problems of the Jacobi stability analysis and recovery of the Lorenz dynamic system free parameters according to the indirect approximately specified information. In the context of the Kosambi — Cartan — Chern theory, it presents geometric description of the system evolution in time and defines the five geometric invariants. Eigenvalues of the second invariant (deviation curvature tensor) are assessing the system Jacobi stability. Such a study is of interest in applications, where it is required to establish domains with both the Liapunov and the Jacobi stabilities. The paper formulates the inverse problem on recovering the system parameters according to the approximately specified eigenvalues of the second invariant. The regularized inverse problem is solved using the optimization approach. The scalar criterion functions are assumed to be continuous, multidimensional, multi-extremal, locally Lipschitzian, and not necessarily differentiable anywhere. A new hybrid algorithm is introduced in searching for the global solutions. It integrates the stochastic algorithm scanning the variables space and the local minimization deterministic method. In the local search phase, the two-parameter smoothing approximations of the criterial functions are introduced. Numerical example of the Lorenz system parameters recovery is provided.
EDN TDERNS
References
[1] Böhmer C.G., Harko T., Sabau S.V. Jacobi stability analysis of dynamical systems – applications in gravitation and cosmology. Advances in Theoretical and Mathematical Physics, 2012, vol. 16, no. 4, pp. 1145–1196.
[2] Harko T., Pantaragphong P., Sabau S.V. Kosambi–Cartan–Chern (KCC) theory for higher order dynamical systems. International Journal of Geometric Methods in Modern Physics, 2016, vol. 13, no. 2, art. ID 1656014. DOI: 10.1142/S0219887816500146
[3] Abolghasem H. Liapunov stability versus Jacobi stability. Journal of Dynamical Systems and Geometric Theories, 2012, vol. 10, no. 1, pp. 13–32.
[4] Ye K., Hu S. Inverse eigenvalue problem for tensors. Communications in Mathematical Sciences, 2017, vol. 15, no. 6, pp. 1627–1649.
[5] Benning M., Burger M. Modern regularization methods for inverse problems. Acta Numerica, 2018, vol. 27, pp. 1–111.
[6] Wang Y., Yagola A.G., Yang C. Optimization and regularization for computational inverse problems and applications. Berlin, Heidelberg, Springer Verlag, 2010, XVIII+351 p.
[7] Hu S., Ye K. Multiplicities of eigenvalues of tensors. Communications in Mathematical Sciences, 2016, vol. 14, no. 4, pp. 1049–1071.
[8] Kvasov D.E., Sergeev Y.D. Metody lipshitsevoy globalnoy optimizatsii v zadachakh upravleniya [Lipschitz global optimization methods in control problems]. Avtomatika i Telemekhanika, 2013, vol. 74, no. 9, pp. 1435–1448.
[9] Xu Y.T., Zhang Y., Wang S.-G. A modified tunneling function method for non-smooth global optimization and its applications in artificial neural network. Applied Mathematical Modelling, 2015, vol. 39, issue 21, pp. 6438–6450. https://doi.org/10.1016/j.apm.2015.01.059
[10] Lorenz E.I. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 1963, vol. 20, no 2, pp. 130–141.
[11] Harko T., Ho C.Y., Leung C.S., Yip S. Jacobi stability analysis of the Lorenz system. International Journal of Geometric Methods in Modern Physics, 2015, vol. 12, no. 7, art. ID 1550081. https://doi.org/10.48550/arXiv.1504.02880
[12] Sulimov V.D., Shkapov P.M., Sulimov A.V. Jacobi stability and updating parameters of dynamical systems using hybrid algorithms. IOP Conference Series: Material Science and Engineering, 2018, vol. 468, p. 012040. DOI: 10.1088/1757-899X/468/1/012040
[13] Chen Y., Yin Z. The Jacobi stability of a Lorenz-type multistable hyperchaotic system with a curve of equilibria. International Journal of Bifurcation and Chaos, 2019, vol. 29, no. 5, p. 1950062. DOI: 10.1142/S0218127419500627
[14] Torres R.H., Campos Velho H.F., da Luz E.F.P. Enhancement of the Multi-Particle Collision Algorithm by mechanisms derived from the opposition-based optimization. Selecciones Matemáticas, 2019, vol. 06 (2), pp. 156–177.
[15] Shkapov P.M., Sulimov A.V., Sulimov V.D. Vychislitelnaya diagnostika neustoychivykh po Yakobi dinamicheskikh sistem s ispolzovaniem gibridnykh algoritmov globalnoy optimizatsii [Computational diagnostics of Jacobi unstable dynamical systems with the use of hybrid algorithms of global optimization]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2021, no. 4 (97), pp. 40–56.
[16] Sulimov V.D., Sulimov A.V., Shkapov P.M. Programma dlya EVM, realizuyushchaya gibridnyi algoritm globalnoy nedifferentsiruemoy optimizatsii QOM-PCALMSI [Computer program implementing the hybrid algorithm of global non-differentiable optimization QOM-PCALMSI]. Svidetelstvo o gosudarstvennoy registratsii programmy dlya EVM no. 2022664841. Zayavka no. 2022663517. Data gosudarstvennoy registratsii v Reestre program dlya EVM 05 avgusta 2022 [Certificate of state registration of computer program no. 2022664841. Application no. 2022663517. Date of state registration in the Register of computer programs: August 5, 2022].