On the problem of analyzing the linear mechanical system dynamic behavior exposed to the high-frequency action
Authors: Tushev O.N., Kondratyev E.K.
Published in issue: #4(148)/2024
DOI: 10.18698/2308-6033-2024-4-2347
Category: Mechanics | Chapter: Theoretical Mchanics, Machine Dynamics
The paper considers a problem of analyzing the linear multidimensional system dynamics exposed to action of the additive and parametric sinusoidal high-frequency components with the aliquant frequencies. In accordance with the N.N. Bogolyubov method, solution is presented as superposition of the slow and fast components with the external influence frequencies; two approximations are studied. Since external influence is practically aperiodic in general due to the frequencies non-multiplicity, the high-frequency harmonics averaging over a period in the second approximation is replaced by the motion repeated segregation into the slow and fast. It is shown that parametric component causes an increase in the system rigidity, which somewhat transforms the natural frequencies. Due to the aliquant frequencies in the system, low-frequency oscillations arise at the combination frequency equal to the difference in additive and parametric component frequencies. Thus, resonant modes are possible in the system. If the frequencies are equal, a constant component appears in the solution. Solution is obtained in the analytical vector form, which is convenient in the analysis. The results are illustrated with an example.
EDN ZEUNVC
References
[1] Ilyin M.M., Kolesnikov K.S., Saratov Yu.S. Teoriya kolebaniya [Theory of oscillations]. Moscow, BMSTU Publ., 2003, 272 p.
[2] Seyranian A.P., Yabuno H., Tsumoto K. Neustoychivost i periodicheskie dvizheniya fizicheskogo mayatnika s koleblyuyushcheysya tochkoy podvesa [Instability and periodic motion of a physical pendulum with the oscillating suspension point]. Doklady Akademii nauk — Proceedings of the Russian Academy of Sciences (RAS), 2005, vol. 404, no. 2, pp. 192–197.
[3] Seyranian A.P., Mailybaev A.A. Multiparameter Stability with Mechanical Applications. Singapore, etc., World Scientific, 2004, 420 p.
[4] Yaluno H., Miura M., Aoshima N.J. Sound and Vibration, 2004, vol. 273, pp. 293–513.
[5] Chelomey S.V. Nelineynye kolebaniya s parametricheskim vozbuzhdeniem [Nonlinear oscillations with parametric excitation]. Izv. AN SSSR. Mekhanika tverdogo tela — Mechanics of Solids. A Journal of the USSR Academy of Sciences, 1977, no. 3, pp. 44–53.
[6] Chelomey S.V. O dinamicheskoy ustoychivosti pryamogo truboprovoda, nagruzhennogo peremennoy osevoy siloy pri protekanii cherez nego pulsiruyushchey zhidkosti [On dynamic stability of straight pipeline with pulsing liquid inside under effect of variable axial force]. Izv. RAN. Mekhanika tverdogo tela — Mechanics of Solids. A Journal of the Russian Academy of Sciences, 1998, no. 6, pp. 175–184.
[7] Kapitsa P.L. Dinamicheskaya ustoychivost mayatnika pri koleblyushcheysya tochke podvesa [Dynamic stability of a pendulum with oscillating suspension point]. Zhurnal eksper. i teor. fiziki — Journal of Experimental and Theoretical Physics, 1951, vol. 21, iss. 5, pp. 588–597.
[8] Chelomey V.N. O vozmozhnosti povysheniya ustoychivosti uprugikh sistem pri pomoshchi vibratsiy [On possibility of raising elastic system stability by means of vibrations]. Doklady Akademii nauk — Proceedings of the Russian Academy of Sciences (RAS), 1956, vol. 110, no. 3, pp. 345–347.
[9] Chelomey V.N. Izbrannye trudy [Selected works]. Moscow, Mashinostroenie Publ., 1989, 335 p.
[10] Bogolyubov N.N., Sadovnikov B.I. Ob odnom variante metoda usredneniya [On one version of averaging method]. Vestnik MGU. Ser. 3, fizika, astronomiya — Moscow University Physics Bulletin, 1961, no. 3, pp. 24–34.
[11] Bogolyubov N.N., Mitropolskiy Yu.A. Asipmptoticheskie metody v teorii nelineynykh kolebaniy [Asymptotic method in nonlinear oscillations theory]. Moscow, Nauka Publ., 1975, 412 p.
[12] Strizhak T.G. Metody issledovaniya dinamicheskikh sistem tipa “mayatnika” [Research technique for dynamic systems of pendulum type]. Alma-Ata, Nauka Publ., 1981, p. 13.
[13] Chelomey S.V. O dvukh zadachyakh dinamicheskoy ustoychivosti kolebatelnykh sistem, postavlennykh akademikami P.L. Kapitsey i V.N. Chelomeyem [On two problems of dynamic stability of oscillating systems, put on by P.L. Kapitsa and V.N. Chelomey academicians]. Izv. RAN. Mekhanika tverdogo tela — Mechanics of Solids. A Journal of the Russian Academy of Sciences, 1999, no. 6, pp. 159–166.
[14] Chelomey V.N. Paradoksy v mekhanike, vyzyvaemye vibratsiey [Paradoxes in mechanics caused by vibration]. Doklady Akademii nauk — Proceedings of the Russian Academy of Sciences (RAS), 1983, vol. 270, no. 1, pp. 62–67.
[15] Iorish Yu.I. Vibrometriya [Vibrometry]. Moscow, Nauka Publ., 1963, 753 p.
[16] Tushev O.N., Chernov D.S. Kvazistaticheskiy “ukhod” mayatnika pri vozmushchenii tochki podvesa vysokochastotnoy poligarmonocheskoy vibratsiey s nekratnymi chastotami [Pendulum quasi-static drift effect at suspension point excitation by high-frequency polyharmonic multiple frequency vibration]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2021, no. 5, pp. 4–16.