Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Features of plasma flow around the descent module in the reentry phase with a protrusion on its lateral surface

Published: 24.01.2024

Authors: Tugaenko V.Yu., Gribkov A.S., Grankina E.N., Scherbenko N.V.

Published in issue: #1(145)/2024

DOI: 10.18698/2308-6033-2024-1-2328

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The paper analyzes features of plasma flow around a descent module (DM) in passage through the Earth’s atmosphere at the orbital speed, which are associated with a propulsion (pitch) unit installed on the leeward side of the lateral surface. Based on the nature of thermal alterations in the thermal protection materials of the lateral surface, the paper shows that part of the compressed layer is “flowing off” from the frontal thermal protection shield, is being reflected from the pitch unit frontal part and settles on the DM lateral surface. Processes influencing the deposit formation on the porthole positioned on the DM leeward side are assessed. A space experiment is presented on instrumental study of the emission spectrum of the gas-plasma-dust layer and its chemical composition during the DM descent.


References
[1] Savino R., D’Elia M.E., Carandente V. Plasma Effect on Radiofrequecy Communications for Lifting Reentry Vehicles. Journal of Spacecraft and Rockets, 2015, vol. 52 (2), pp. 417–425.
[2] Colonna G., Capitelli M., Laricchiuta A. Hypersonic Meteoroid Entry Physics. IOP Series in Plasma Physics. IOP Publishing. Bristol, UK, 2019, 459 p.
[3] Davis B.A. International Space Station Soyuz Vehicle Descent Module Evaluation of Thermal Protection System Penetration Characteristics. NASA Technical Report JSC-66527. Houston, Texas, USA, 2013, 396 p.
[4] Andreevskiy V.V. Dinamika spuska kosmicheskikh apparatov na Zemlyu [Dynamics of spacecraft descent to Earth]. Moscow, Mashinostroenie Publ., 1970, 235 p.
[5] Surzhikov S.T. Radiatsionnaya gazovaya dinamika spuskaemykh kosmicheskikh apparatov bolshikh razmerov [Radiative gas dynamics of large landing spacecraft]. Teplofizika vysokikh temperatur — High Temperature, 2010, vol. 48, no. 6, pp. 956–964.
[6] Surzhikov S.T. Prostranstvennaya zadacha aerofiziki sverkhorbitalnogo kosmicheskogo apparata na bolshikh vysotakh [The spatial task of the aerophysics of a super-orbital space vehicle at large altitude]. Doklady Akademii nauk — Proceedings of the Academy of Sciences, 2018, vol. 482, no. 3, pp. 270–274.
[7] Tugaenko V.Yu., Gribkov A.S., Surzhikov S.T. Fiziko-khimicheskie kharakteristiki plazmennogo potoka, okruzhayushchie vozvrashchyaemye kosmicheskie apparaty pri vkhoda v atmosferu Zemli s orbitalnoy skorostyu [Physico-chemical characteristics of the plasma flow surrounding the returning spacecraft upon entry into the Earth’s atmosphere at orbital speed]. Teplofizika vysokikh temperatur — High Temperature, 2023, vol. 61, no. 3, pp. 1–10.
[8] Tugaenko V.Y., Ovchinnikov D.S., Isaenkova M.G., Kargin N.I., Krymskaya O.A., Timofeev A.A., Babich Y.A. The chemical and mineral composition of particles precipitated from a plasma—dust layer on the porthole of the descend space vehicles during the passage of the Earth’s atmosphere. Geochemistry International, 2021, vol. 59, no. 1, pp. 107–112.
[9] Erdman P.W., Zipf E.C., Espy P., Howlett C., Levin D.A., Loda R., Collins R.J. Candler G.V. Flight measurements of low-velocity bow shock ultraviolet radiation. J. Thermophysics and Heat Transfer, 1993, vol. 7, no. 1, pp. 37–41.
[10] Erdman P.W., Zipf E.C., Espy P., Howlett C., Levin D.A., Collins R.J., Candler G.V. Measurements of ultraviolet radiation from a 5-km/s bow shock. J. Thermophysics and Heat Transfer, 1994, vol. 8, no. 3, pp. 441–446.
[11] Plastinin Yu.A., Karabadzhak G.F., Vlasov V.I., Gorshkov A.B., Zalogin G.N. Izmerenie i analiz intensivnosti UF izlucheniya plazmennogo obrazovaniya po traektorii spuska s orbity SA “Soyuz-TMA” po dannym nablyudeniy s borta MKS [Measurement and analysis of the intensity of UV radiation of plasma formation along the trajectory of descent from the orbit of the Soyuz-TMA DM according to observation data from on board the ISS]. Fiziko-khimicheskaya kinetika v gazovoy dinamike — Physical-Chemical Kinetics in Gas Dynamics. 2006. vol. 4. Available at: http://chemphys.edu.ru/issues/2006-4/articles/94/ (accessed October 15? 2023).
[12] Levin D.A., Candler G.V., Collins R.J., Erdman P.W., Zipf E.C., Howlett C.L. Examination of ultraviolet radiation theory for bow shock rocket experiment. AIAA Paper, 1992, no. 92–2871.
[13] Gorelov V.A., Gladyshev M.K., Kireev A.Y., Yegorov I.V., Plastinin Yu.A., Karabadzhak G.F. Experimental and numerical study of nonequilibrium ultraviolet NO and N2+ emission in shock layer. J. Thermophysics and Heat Transfer, 1997, vol. 12, no. 1, pp. 1–8.
[14] Vlasov V.I., Gorshkov A.V., Kovalev R.V., Plastinin Yu.A. Theoretical studies of air ionization and NO vibrational excitation in low density hypersonic flow around re-entry bodies. AIAA Paper, 1997, no. 97–2582.
[15] Plastinin Yu.A., Vlasov V.I., Gorshkov A.V., Kovalev R.V., Kuznetsova L.A. Analysis of nonequilibrium radiation for low density hypersonic flow at low to moderate velocities. AIAA Paper, 1998, no. 98–2466.