Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Numerical analysis of the influence of temperature-dependent thermophysical properties of supersonic airflow on shockwave structure

Published: 21.12.2023

Authors: Sarkisov A.V., Arefiev K.Yu., Abramov M.A.

Published in issue: #12(144)/2023

DOI: 10.18698/2308-6033-2023-12-2326

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The gas-dynamic characteristics of a supersonic flow in the analytical approximation of constancy of thermophysical properties during shock wave formation have been described in scientific literature. However, thermophysical properties’ deviations from the ideal model are observed during shock wave formation. This paper presents an engineering method for determining the gas-dynamic characteristics of a supersonic flow with a shock wave structure. The analysis includes assessing air parameters using the proposed engineering model and comparing them to analytical approximation calculations assuming thermophysical properties constancy. Numerical calculations using commercial software for simulating supersonic gas flow will verify the results.

[1] Kouremenos D.A. The normal shock waves of real gases and the generalized isentropic exponents. Forschung Im Ingenieurwesen, 1986, pp. 23–31.
[2] Kouremenos D.A., Kakatsios X.K., Krikkis R.N. Berechnung des senkrechten Verdichtungsstoßes des Wasserdampfes durch die Redlich–Kwong-Zustandsgleichung. Forschung im Ingenieurwesen, 1990, Вd. 56, N. 2, S. 54–57. DOI: 10.1007/BF02560959
[3] Maximilian Passmann et al 2017 J. Phys.: Conf. Ser. 821 012004.
[4] Lemmon E.W., Bell I.H., Huber M.L., McLinden M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2018.
[5] ANSYS Fluent User’s Guide. ANSYS, Inc. Release 2021 R1.
[6] Golubev A.G. Aerodynamics. Moscow, BMSTU Publ., 2017, 607 p.
[7] Trusov B.G. TERRA software system for modeling phase and chemical equilibria at high temperatures. International Conference on Chemical Thermodynamics XIV. Sain-Petersburg, 2002.
[8] Gupta R.N., Lee K.-P., Thompson R.A., Yos J.M. Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000K. NASA Reference Publication 1260, 2013.
[9] Launder B.E., Spalding D.B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974, no. 3, pp. 269–289.
[10] Ames Research Staff. Report 1135. Equations, Tables, and Charts for Compressible Flow. Ames Aeronautical Laboratory. Moffett Field, Calif., 1953.
[11] Kraiko A.N. Teoreticheskaya gazovaya dinamika: klassika i sovremennost [Theoretical gas dynamics: classic and modern]. Moscow, Torus Press, 2010, 440 p.
[12] Vasiliev E.I., Kraiko A.N. Chislennoye modelirovaniye difraktsii slabykh skachkov na kline v usloviyakh paradoksa Neymana [Numerical modeling of the diffraction of weak jumps on the wedge in the conditions of the paradox of Neumann]. ZhVMIMF — Computational Mathematics and Mathematical Physics, 1999, vol. 39, no. 8 pp. 1393–1404.