Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Stability of the spherical motion of a solid body with an inhomogeneous fluid performing a uniform vortex motion

Published: 29.01.2023

Authors: Win Ko Ko, Temnov A.N., Yan Naing Oo

Published in issue: #1(133)/2023

DOI: 10.18698/2308-6033-2023-1-2242

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

In this paper, the equations of spherical motion of a solid body with a rotating inhomogeneous incompressible fluid that fills a completely ellipsoidal cavity are obtained and investigated. The stability of rotation of a solid with an inhomogeneous fluid having a linear density distribution is considered. Arbitrary fields of density and velocity of fluid particles are represented as a power series by spatial variables with coefficients that depend only on time. Sufficient conditions for the stability of the rotation of a solid body with a fluid around the vertical axis of dynamic symmetry are presented. The obtained equations of motion make it possible to study the stability of stationary motions of the system under consideration in order to assess the effect of fluid separation on the dynamics of the body. By analogy with the motion of a solid body, it is stated that the obtained conditions are also necessary and sufficient conditions for stationary rotations of an inhomogeneous fluid in an ellipsoidal cavity.


References
[1] Zhukovsky N.E. O dvizhenii tverdogo tela, imeyuschego polosti, napolnennye odnorodnoi kapelnoi zhidkostyu [On the motion of a rigid body with cavities filled with homogenous drop-like liquid]. Moscow, BMSTU Publ., 2017, 137 p.
[2] Sloudsky Th. De la rotation de la terre supposee fluide a son interieur. Bulletin de la Societe Imperiale des naturalistes de Moscou, 1895, Tome IX, pp. 285–318.
[3] Hough S.S. The oscillations of a rotating ellipsoidal shell containing fluid. Philosophical Transactions of the Royal Society of London. A, 1895, vol. 186, part 1, pp. 469–506.
[4] Poincare H. Sur la precession des corps deformables. Bulletin astronomique, 1910, vol. 27, pp. 321–356.
[5] Derendyaev N.V. Ob ustoichivosti statsionarnogo vrashcheniya tsilindra, zapolnennogo stratifitsirovannoy neszhimaemoy zhidkostyu [Stability of the stationary rotation of a cylinder filled with a stratified viscous incompressible fluid]. Doklady AN SSSR (Reports of the USSR Academy of Sciences), 1983, vol. 272, no. 5, pp. 1073–1076.
[6] Savchenko A.Ya., Ignatov A.L. Issledovanie ustoichivosti ravnomernykh vrascheniy simmetrichnogo volchka s zhidkim zapolnitelem [Investigation of the stability of uniform rotations of a symmetric top with a liquid filler]. Prikladnaya matematika i mekhanika — Journal of Applied Mathematics and Mechanics, 1974, vol. 10, no. 8, pp. 107–111.
[7] Ignatyev A.O. K dostatochnym usloviyam ustoichivosti osesimmetrichnogo volchka s zhidkim zapolnitelem [To sufficient stability conditions of an axisymmetric spinning top with a liquid filler]. In: Mekhanika tverdogo tela: Resp. mezhved. sb. no. 9 [Solid body mechanics: Republican interdepartmental collection, no. 9]. Kiev, Naukova Dumka Publ., 1977, pp. 82–86.
[8] Pozdnyakovich E.V. Ravnomernye vrashcheniya tverdogo tela s zhidkim zapolnitelem [Uniform rotations of a solid body with a liquid filler]. In: Mekhanika tverdogo tela: Resp. mezhved. sb. no. 10 [Solid body mechanics: Republican interdepartmental collection, no. 10]. Kiev, Naukova Dumka Publ., 1978, pp. 49–54.
[9] Aye Min Win, Temnov A.N. Vraschenie tverdogo tela s ellipsoidalnoy polostyu, tselikom napolnennoy stratifitsirovannoy zhidkostyu [Rotation of a rigid body with an ellipsoidal cavity is completely filled with stratified fluid]. Trudy MAI, 2015, no. 79. Available at: http://trudymai.ru/published.php?ID=55633
[10] Pozhalostin A.A., Goncharov D.A. O parametricheskikh osesimmetrichnykh kolebaniyakh zhidkosti v tsilindricheskom sosude [On axisymmetric parametric oscillations of a fluid in a cylindrical vessel]. Trudy MAI, 2017, no. 95. Available at: https://trudymai.ru/published.php?ID=84412
[11] Park SongYi, Grigoriev V.G. Ustoichivost tonkostennykh osesimmetrichnykh soosnykh konstruktsii, soderzhaschikh zhidkost, pri mnogofaktornykh nagruzkakh [Stability of thin-walled axisymmetric coaxial structures containing liquid under multifactor loads]. Trudy MAI, 2021, no. 119. DOI: 10.34759/trd-2021-119-08
[12] Dolzhansky F.V. O gidrodinamicheskoy interpretatsii uravneniy dvizheniya tyazhelogo volchka. [On the hydrodynamic interpretation of the equations of motion of a heavy spinning top]. Izv. AN SSSR. Fizika atmosfery i okeana — Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics, 1977, no. 2, pp. 201–203.
[13] Temnov A.N. Odnorodnoe vikhrevoe dvizhenie neodnorodnoy zhidkosti [Homogeneous vortex motion of an inhomogeneous fluid]. Trudy MVTU im. N.E. Baumana no. 293 [Proc. of the Bauman MHTS, no. 293]. Moscow, 1979, pp. 50–57.
[14] Temnov A.N., Yan Naing Oo. Mekhanicheskiy analog dvizheniy neodnorodnoy zhidkosti [Mechanical analogue of the motions of an inhomogeneous fluid]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2022, iss. 7. https://doi.org/10.18698/2308-6033-2022-7-2192
[15] Temnov A.N. Ustoichivost statsionarnykh vrascheniy neodnorodnoy zhidkosti v ellipsoidalnoy polosti. [Stability of stationary rotations of an inhomogeneous fluid in an ellipsoidal cavity] Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye — Proceedings of Higher Educational Institutions. Machine Building, 1979, no. 7, pp. 149–151.
[16] Yan Naing Oo. Dvizhenie tverdogo tela s zhidkostyu, sovershayuschey odnorodnoe vikhrevoe dvizhenie. [Motion of a solid body with a liquid performing a homogeneous vortex motion]. In: Sb. materialov konf. “Nauka, tekhnologii i biznes. III Mezhvuzovskaya konferentsiya aspirantov, soiskateley i molodykh uchenykh” [Collection of conference materials “Science, technologies and business. III Interacademic conference of graduate students, aspirants and young researchers”. Moscow, April 27–28, 2021, Bauman Moscow State Technical University]. Moscow, BMSTU Publ., 2021, pp. 209–222. Available at: https://bmstu.press/catalog/item/7324/
[17] Melchior P. The Earth Tides, Pergamon Press, 1966 [In Russ.: Melkhior P. Zemnye prilivy. Moscow, Mir Publ., 1968, 482 p.].
[18] Lure A.I. Analiticheskaya mekhanika [Analytical mechanics]. Moscow, Fizmatgiz Publ., 1961, 824 p.
[19] Moiseyev N.N., Rumyantsev V.V. Dinamika tela s polostyami soderzhaschimi zhidkost [Dynamics of a body with cavities containing liquid]. Moscow, Nauka Publ., 1965, 439 p.
[20] Merkin D.R. Vvedenie v teoriyu ustoichivosti dvizheniya [Introduction to the theory of motion stability]. Moscow, Nauka Publ., 1976, 320 p.