Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Mechanical analogue of the motions of an inhomogeneous fluid

Published: 28.07.2022

Authors: Temnov A.N., Yan Naing Oo

Published in issue: #7(127)/2022

DOI: 10.18698/2308-6033-2022-7-2192

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The article considers the homogeneous vortex motion of an inhomogeneous fluid in a stationary ellipsoidal cavity arbitrarily oriented with respect to the direction of a uniform gravity field using the Lagrange variables. Uniform vortex motion of a fluid is a motion in which the rotor speed for all particles has the same value, and depends only on time. The article shows that the equations of homogeneous vortex motion of a heavy inhomogeneous fluid are possible in an ellipsoidal cavity with a linear density distribution and proposes a geometric interpretation of fluid motion.
Using the Lagrange variables, the equations of motion of an inhomogeneous fluid are obtained, coinciding with the equations of a heavy rigid body motion around a fixed point, written in a fixed coordinate system arbitrarily located relative to the direction of a homogeneous gravity field.


References
[1] Kolesnikov K.S. Dinamika raket [Dynamics of rockets]. Moscow, Mashinostroenie Publ., 2003, 520 p.
[2] Poincare H. Bulletin astronomique, 1910, vol. 27, pp. 321–356.
[3] Zhukovsky N.E. O dvizhenii tverdogo tela, imeyushchego polosti, napolnennye odnorodnoy kapelnoy zhidkostyu [Dynamics of a rigid body with cavities partially filled with liquid]. Moscow, BMSTU Publ., 2017, 137 p.
[4] Hough S.S. Philosophical Transactions of the Royal Society of London. A, 1985, vol. 186, part 1, pp. 469–506.
[5] Moiseev N.N., Rumyantsev V.V. Dinamika tela s polostyami soderzhashhimi zhidkost [Dynamics of a body with cavities containing liquid]. Moscow, Nauka Publ., 1965, 439 p.
[6] Lamb H. Hydrodynamics. Cambridge, University Press Publ., 1916 [In Russ.: Lamb H. Gidrodinamika. Moscow, Gostekhizdat Publ., 1947, 928 p.].
[7] Savchenko A.Ya., Kovalev I.N, Gallo I.V., Bolgrabokaja I.A., Nesterov O.Yu., Sudakov S.N., Chudenko A.N. Dinamika sistemy svyazannykh tverdykh tel i tel s polostyami, soderzhashhimi zhidkost [Dynamics of a system of connected rigid bodies and bodies with cavities containing liquid.]. Preprint. Donetsk, AN USSR, Institut prikladnoy matematiki i mekhaniki Publ., 1990, 50 p.
[8] Savchenko A.Ya., Kononov Yu.N., Benkovich Yu.G., Pozdnyakovich E.V., Mosiyash T.A., Sudakov S.N. Nekotorye zadachi ustoychivosti dvizheniya tverdogo tela s vikhrevym zapolneniem [Some problems of stability of motion of a rigid body with vortex filling]. Preprint. Donetsk, AN USSR, Institut prikladnoy matematiki i mekhaniki Publ., 1990, 46 p.
[9] Gledzer E.B., Dolzhansky F.V., Obukhov A.M. Sistemy gidrodinamicheskogo tipa i ikh primenenie [Hydrodynamic type systems and their application]. Moscow, Nauka Publ., 1981, 366 p.
[10] Suslov G.K. Teoreticheskaya mekhanika [Theoretical mechanics]. Moscow, Gostekhizdat. Publ., 1946, 655 p.
[11] Kolesnikov K.S., Dubinin V.V. Kurs Teoreticheskoy mekhaniki [Course of Theoretical Mechanics]. Moscow, BMSTU Publ., 2017, 580 с.
[12] Kochin N.E., Kibel I.A., Roze N.V. Teoreticheskaya gidromekhanika [Theoretical fluid mechanics]. Vol. 1. Moscow, Fizmatgiz Publ., 1963, 584 p.
[13] Fridman A.A. Opyt gidromekhaniki szhimaemoy zhidkosti [Experience in hydromechanics of a compressible fluid]. Leningrad, Gosudarstvennoe tekhniko-teoreticheskoe izdatelstvo Publ., 1934, 377 p.
[14] Arnold V.I. Matematicheskie metody klassicheskoy mekhaniki [Mathematical methods of classical mechanics]. Moscow, Nauka Publ., 2017, 416 p.