Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Filtration model through a homogeneous porous medium

Published: 26.08.2016

Authors: Gurchenkov A.A., Nosov M.V.

Published in issue: #9(57)/2016

DOI: 10.18698/2308-6033-2016-9-1531

Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma

The study considers a model of vertical water transfer in soil; describes the water transfer process by one-dimensional nonlinear parabolic equation. The diffusion coefficient and the soil hydraulic conductivity included in the equation is calculated by van Genuchten formulas widely used in practice. An important model component is the evaporation from the soil surface. The study formulates the problem of determining evaporation as an optimal problem - the one, in which the phase variables are the soil moisture values at different depths, and control is the desired evaporation. The mean-square soil moisture values deviation from some prescribed values derived from calculations based on the hydrological models is the objective function. We solve the numerical optimization by the steepest descent method; the objective function gradient is calculated using the fast automatic differentiation method (FAD).

[1] Genuchten M.Th., van. Soil Science Society of America Journal, 1980, vol. 44, pp. 892-898.
[2] Ayda-Zade K.R., Evtushenko Yu.G. Matematicheskoe modelirovanie - Math modeling, 1989, vol. 1, pp. 121-139.
[3] Griewank A. On automatic differentiation. Mathematical Programming: Recent Developments and Applications. Iri M., Tanabe K., ed. Tokyo, Kluwer Academic Publ., 1989, pp. 83-108.
[4] Griewank A., Corliss G.F., ed. Automatic Differentiation of Algorithms. Theory, Implementation and Application. Philadelphia, Society for Industrial and Applied Mathematics (SIAM) Publ., 1991, pp. 238-245.
[5] Evtushenko Yu.G. Automatic differentiation viewed from optimal control theory. Automatic Differentiation of Algorithms. Theory, Implementation and Application. Griewank A., Corliss G.F., ed. Philadelphia, Society for Industrial and Applied Mathematics (SIAM) Publ., 1991, pp. 25-30.
[6] Evtushenko Yu.G. Optimization methods and software, 1998, vol. 9, pp. 45-75.
[7] Griewank A. Evaluating Derivatives. Philadelphia, Society for Industrial and Applied Mathematics (SIAM) Publ., 2000, pp. 43-49.
[8] Karmanov V.G. Matematicheskoe programmirovanie [Mathematical programming]. Moscow, Fizmatlit Publ., 2004.
[9] Abakarov A.Sh., Sushkov Yu.A. Trudy FORA - Works of the Adygea Republic Physical Society, 2004, no. 1, pp. 154-160.
[10] Takha Khemdi A. Vvedenie v issledovanie operatsiy [Operations research: an Introduction]. 8th ed., Moscow, Williams Publ., 2007, 912 p.
[11] Plotnikov A.D. Matematicheskoe programmirovanie [Mathematical programming]. Proc. of the express-course. Minsk, Novoe znanie Publ., 2006, 171 p.
[12] Vasilyev F.P. Chislennye metody resheniya ekstremalnykh zadach [Numerical methods for solving extreme problems]. Moscow, Nauka Publ., 2002, 552 p.
[13] Korneenko V.P. Metody optimizatsii [Optimization methods]. Moscow, Vysshaya shkola Publ., 2007, 664 p.
[14] Nikolsky M.S., Grigorenko N.L., Dmitriev V.I., ed. Izbrannye Trudy L.S. Pontryagina. Ser. Vydayuschiesya uchenye MGU [Selected Works of L.S. Pontryagin. Series Outstanding scientists of MSU]. Moscow, MaxPress Publ., 2004, 552 p.
[15] Gurchenkov A.A. Dinamika zavikhrennoy zhidkosti v polosti vraschayuschegosya tela [Dynamics of fluid turbulence in the rotating body cavity]. Moscow, Fizmatlit Publ., 2010.
[16] Gurchenkov A.A., Nosov M.V., Tsurkov V.V. Control of Fluid-Containing Rotating Rigid Bodies. CRC Press/Balkema Publ., 2013.