Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Ill-positioned inverse problems in the mechanical system statistical dynamics

Published: 03.06.2024

Authors: Gusev A.S., Zinchenko L.V., Starodubtseva S.A.

Published in issue: #6(150)/2024

DOI: 10.18698/2308-6033-2024-6-2362

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

The paper proposes a new solution to the ill-positioned inverse problems in the mechanical system statistical dynamics using regularization of the random processes by various methods of smoothing their trajectories. It considers cases, where either smoothed white noise or a stationary process with the hidden periodicity is registered at the dynamic system output. In both cases, non-differentiable random processes are present at the system input; their trajectories are smoothed by averaging over the minor intervals or by eliminating features of their amplitude spectra at infinity. As a main example, the paper considers a mechanical system of a device designed to determine probabilistic characteristics of the input kinematic effect on it, it is based on the oscillation protection object registered displacement or on the elastic element deformation.

EDN PEJIGZ


References
[1] Gusev A.S., Naydenov S.O. Analiz traektoriy nedifferentsiruemykh sluchaynykh protsessov [Analysis of trajectories of non-differentiable random processes]. Izvestia vuzov. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2014, no. 9, pp. 3–8.
[2] Gusev A.S. Veroyatnostnye metody v mekhanike mashin i konstruktsiy [Probabilistic methods in mechanics of machines and structures]. Moscow, BMSTU Publ., 2009, 224 p.
[3] Gusev A.S. Kurs lektsiy po veroyatnostnym metodam v mekhanike [Course of lectures on probabilistic methods in mechanics]. Moscow, BMSTU Publ., 2020, 102 p.
[4] Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods of solving the ill-positioned problems]. Moscow, Nauka Publ., 1979, 285 p.
[5] Tikhonov A.N., Goncharskiy A.V. Nekorrektnye zadachi estestvoznaniya [Ill-positioned problems in natural science]. Moscow, MGU Publ., 1987, 303 p.
[6] Khazov P.A. Dinamika stroitelnykh konstruktsiy pri ekstremalnykh prirodnykh vozdeystviyakh: kolebaniya, prochnost, resurs [Dynamics of building structures under extreme natural influences: fluctuations, strength, resource]. Nizhniy Novgorod, NNGАSU Publ., 2022, 96 р.
[7] Gusev A.S., Scherbakov V.I., Chukanin Y.P., Starodubtseva S.A. Metod statisticheskoy linearizatsii v dinamike nelineynykh sistem mobilnykh mashin [Method of statistical linearization of nonlinear dynamics in system of mobile machines]. Izvestiya MGTU MAMI, 2014, vol. 1, no. 19, pp. 84–86.
[8] Yablonskiy A.A., Nikiforova V.M. Kurs teoreticheskoy mekhaniki. T. 1: Statika. Kinematika. T. 2: Dinamika [Course of theoretical mechanics Vol. 1: Statics. Kinematics. Vol. 2: Dynamics]. Moscow, KnoRus Publ., 2010, 608 p.
[9] Panovko Ya.G., Gubanova I.I. Ustoychivost i kolebaniya uprugikh sistem. Sovremennye kontseptsii, paradoksy i oshibki [Stability and vibrations of elastic systems. Modern concepts, paradoxes and errors]. Moscow, Lenand Publ., 2015, 350 p.
[10] Okopny Yu.A., Radin V.P., Chirkov V.P. Kolebaniya lineynykh sistem [Fluctuations of linear systems]. Moscow, “Spektr” Publ., 2014, 432 p.