Underwater barrier deformation and destruction in the high-explosive and shaped charges blast
Authors: Ladov S.V.
Published in issue: #6(138)/2023
DOI: 10.18698/2308-6033-2023-6-2279
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body
The paper considers specifics in deformation and destruction of the axisymmetric steel plate rigidly fixed in a cylindrical matrix with a sealed air cavity placed in water and exposed to impact of the high-explosive and shaped charges blast. Results of experimental study of the barrier through destruction depending on the center of mass of the explosive charge distance to the barrier and its thickness under separate action of high-explosive, cumulative and combined action of the cumulative high-explosive underwater blast are presented. On the basis of metallographic analysis, the barrier destruction mechanism is presented by formation and development of the rupture main macro-cracks associated with the edge of the hole from the cumulative jet action.
References
[1] Cole R.H. Underwater explosions. Dover Publications, 1948 [In Russ.: Cole R. Podvodnye vzryvy. Moscow, Inostrannoy Literatury Publ., 1950, 494 p.].
[2] Andreev S.G., Babkin A.V., Baum F.A., et al. Fizika vzryva [Explosion physics]. In 2 vols. Vol. 1. L.P. Orlenko, ed. 3rd ed., rev. Moscow, Fizmatlit Publ., 2004, 832 p.
[3] Ozeretskovsky O.I. Deystvie vzryva na podvodnye obyekty [Explosion effect on the underwater objects]. E.S. Shakhidzhanov, ed. Moscow, FGUP “TsNIIKhM” Publ., 2007, 262 p.
[4] Walters W.P., Zukas J.A. Fundamentals of shaped charge. N.Y., John Wiley and Sons, 1989, 398 p.
[5] Andreev S.G., Babkin A.V., Baum F.A., et al. Fizika vzryva [Explosion physics]. In 2 vols. Vol. 2. L.P. Orlenko, ed. 3rd ed., rev. Moscow, Fizmatlit Publ., 2004, 656 p.
[6] Ladov S.V. Kumulyativnoe deystvie boepripasov [Ammunition cumulative effect]. Moscow, BMSTU Publ., 2021, 160 p.
[7] Ladov S.V., Babkin A.V., Vasyukov V.I., Fedorov S.V. Fizicheskaya kartina i parametry vzryva kumulyativnogo zaryada v bezgranichnoy zhidkosti [Physical picture and parameters of the shaped charge explosion in the boundless liquid]. Oboronnaya tekhnika — Defense Technology, 2002, no. 1–2, pp. 65–71.
[8] Ladov S.V. Eksperimentalnye issledovaniya razrusheniya podvodnoy pregrady konechnoy tolschiny pri deystvii kumulyativnykh zaryadov [Experimental studies of destruction of the underwater barrier of finite thickness under the action of shaped charges]. In: Sb. materialov nauchnoy konferentsii “Sovremennaya ballistika i smezhnye voprosy mekhaniki” [Collection of materials of the scientific conference “Modern ballistics and related issues of mechanics”]. Tomsk, Tomsk State University Publ., 2010, pp. 228–230.
[9] Ladov S.V. Vozmozhnyi mekhanizm razrusheniya korpusa podvodnoy lodki pri vzryve kumulyativnogo zaryada [Possible mechanism of the submarine hull destruction in the shaped charge explosion]. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk — Proceedings of the Russian Academy of Rocket and Artillery Sciences, 2015, no. 1 (85), pp. 54–62.
[10] Babkin A.V., Ladov S.V., Orlenko L.P. Deformirovanie osesimmetrichnoy pregrady pri podvodnom vzryve kumulyativnogo zaryada [Axisymmetric barrier deformation due to underwater explosion of a cumulative charge]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 2 (86). https://doi.org/10.18698/2308-6033-2019-2-1853
[11] Ladov S.V., Babkin A.V., Kolpakov V.I., et al. Ispolzovanie kumulyativno-fugasnykh boevykh zaryadnykh otdeleniy v malogabaritnykh torpedakh dlya porazheniya dvukhkorpusnykh podvodnykh lodok [The use of high-explosive cumulative combat charging compartments in small-sized torpedoes to destroy the double-hulled submarines]. Oboronnaya tekhnika — Defense technology, 2005, no. 4–5, pp. 35–43.
[12] Ladov S.V. Povyshenie effektivnosti deystviya malogabaritnykh protivolodochnykh torped [Increasing the effectiveness of small-sized anti-submarine torpedoes]. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk — Proceedings of the Russian Academy of Rocket and Artillery Sciences, 2016, no. 1 (91), pp. 127–132.
[13] Ladov S.V. Primenenie kumulyativno-fugasnykh boevykh zaryadnykh otdeleniy v malogabaritnykh protivolodochnykh torpedakh [The use of high-explosive cumulative combat charging compartments in the small-sized anti-submarine torpedoes]. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk — Proceedings of the Russian Academy of Rocket and Artillery Sciences, 2016, no. 2 (92), pp. 37–42.
[14] Ladov S.V. Deystvie podvodnykh boepripasov s poperechnym raspolozheniem kumulyativnogo zaryada [The action of underwater ammunition with the transverse shaped charge]. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk — Proceedings of the Russian Academy of Rocket and Artillery Sciences, 2019, no. 2 (107), pp. 140–146.
[15] Knott J.F. Fundamentals of fracture mechanics. Butterworth & Co Publishers, 1973 [In Russ.: Knott J.F. Osnovy mekhaniki razrusheniya. Moscow, Metallurgiya Publ., 1970, 472 p.].
[16] Finkel V.M., Kutkin I.A. Issledovanie rosta treschin v tverdykh telakh metodom vysokoskorostnoy kinosyemki [Investigation of crack growth in solids by high-speed filming]. In: Uspekhi nauchnoy fotografii. T. IX. “Vysokoskorostnaya fotografiya i kinofotogragiya” — Advances in scientific photography. T. IX. “High speed photography and film photography”. Moscow, Nauka Publ., 1964, pp. 231–235.