Optimal design solution for circular multilayered bimorph plates
Authors: Shlyakhin D.A., Ratmanova O.V.
Published in issue: #1(85)/2019
DOI: 10.18698/2308-6033-2019-1-1844
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body
The article reports on the development of the mathematical model for calculating the bimorph plates. It considers multilayered solid stiffened and hinged structures, in which the principle of the inverse piezoeffect is used. The authors have constructed closed solutions to the nonstationary axially symmetric problems of electroelasticity theory for multilayered structures by means of the finite integral transformation method. Based on the analysis of the numerical calculation results the article presents practical recommendations on designing the piezoceramic transducers of resonance and nonresonance classes. We have developed an algorithm for optimizing the work of the considered structures by selecting their geometrical dimensions and the material used. This algorithm allows transforming the applied electric load into mechanical displacement most efficiently. In addition, the presented results make it possible to clarify the assumptions regarding the pattern of the electric field distribution that must be used when designing the bimorph structures of other configurations, the calculation of which is possible only with the help of the applied theories for thin plates
References
[1] Bogorodskiy V.V., ed. Podvodnye elektroakusticheskie preobrazovateli. Spravochnik [Submerged electroacoustic transducers. Reference book]. Leningrad, Sudostroenie Publ., 1983, 248 p.
[2] Sharapov V. Piezoceramic sensors. Springer Verlag, 2010, 498 p.
[3] Dzhagurov R.G. Pezoelektronnye ustroystva vychislitelnoy tekhniki, sistem kontrolya i upravleniya [Piezoelectronic devices of computing tools, monitoring and control systems]. St. Petersburg, Politekhnika Publ., 1994, 608 p.
[4] Domarkas V.I., Kazhis R.-I.Yu. Kontrolno-izmeritelnye pezoelektricheskie preobrazovateli [Control-and-measuring piezoelectric transducers]. Vilnius, Mintis Publ., 1975, 255 p.
[5] Gabbert U., Tzou H.S. Smart Structures and Structronic Systems. London, Kluwer Academic Pub, 2001, 384 p.
[6] Novozhilov Yu.V., Yappa Yu.A. Elektrodinamika [Electrodynamics]. Moscow, Nauka Publ., 1978, 352 p.
[7] Grinchenko V.T., Ulitko A.F., Shulga N.A. Mekhanika svyazannykh poley v elementakh konstruktsiy [Mechanics of related fields in structural components]. Kyiv, Naukova dumka Publ., 1989, 279 p.
[8] Smits J.G., Dalke S.I., Cooney T.K. The constituent equations of piezoelectric bimorphs. Sensors and Actuators A, 1991, no. 28, pp. 41–61.
[9] Gohari S., Sharifi S., Vrcelj Z. New explicit solution for static shape control of smart laminated cantilever piezo-composite-hybrid plates/beams under thermo-electro-mechanical loads using piezoelectric actuators. Composition Structure, 2016, no. 145, рр. 89–112
[10] Vatulyan A.O. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela — Mechanics of Solids, 2007, no. 4, pp. 114–122.
[11] Tsaplev V., Konovalov R., Abbakumov K. Disk Bimorph-Type Piezoelectric Energy Harvester. Journal of Power and Energy Engineering, 2015, no. 3, pp. 63–68. DOI: org/10.4236/jpee.2015.34010
[12] Petrishchev O.N. Vіsnik Cherkaskogo derzhavnogo tekhnologіchnogo unіversitetu — Bulletin of Cherkasy State Technological University, 2013, no. 4, pp. 38–48.
[13] Yanchevskiy I.V. Minimizatsiya progibov elektrouprugoy bimorfnoy plastiny pri impulsnom nagruzhenii [Minimizing the deflections of the electroelastic bimorph plate under impulsive loading]. Problemy vychislitelnoy mekhaniki i prochnosti konstruktsiy [Problems of computational mechanics and strength of structures]. Kharkov, 2011, no. 16, pp. 303–313.
[14] Shlyakhin D.A. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela — Mechanics of Solids, 2013, no. 2, pp. 77–85.
[15] Bardzokas D.I., Kudryavtsev B.A., Senik N.A. Rasprostranenie voln v elektrouprugikh sredakh [Wave propagation in electro-elastic media]. Moscow, Komkniga Publ., 2003, 336 p.
[16] Sneddon I.N. Fourier Transforms. New York, McGraw-Hill, 1951, 542 p. [In Russ.: Sneddon I.N. Preobrazovaniya Fure. Moscow, Izd. inostr. lit. Publ., 1955, 668 p.].
[17] Senitskiy Yu.E. Issledovanie uprugogo deformirovaniya elementov konstruktsiy pri dinamicheskikh vozdeystviyakh metodom konechnykh integralnykh preobrazovaniy [The study of the elastic deformation of structural elements under dynamic loads using finite integral transform]. Saratov, Saratov State University Publ., 1985, 174 p.
[18] Shlyakhin D.A. Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya — Vestnik of Samara University. Natural Science Series, 2011, no. 8 (89), pp. 142–152.
[19] Shlyakhin D.A., Kazakova O.V. A dynamic axially symmetric goal and its extended solution for a fixed rigid circular multi-layer plate. Procedia Engineering, 2016, vol. 153, pp. 662–666. DOI: 10.1016/j.proeng.2016.08.219
[20] Shlyakhin D.A. Vestnik KRSU (Bulletin of Kyrgyz-Russian Slavic University), 2016, vol. 16, no. 5, pp. 108–113.