Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Simulation of elastic foundation deformation in composite cylindrical shell

Published: 19.10.2016

Authors: Dubrovin V.M., Butina T.A.

Published in issue: #11(59)/2016

DOI: 10.18698/2308-6033-2016-11-1553

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

The article considers the elastic properties calculation method (compliance coefficients) of continuous elastic foundation, which is the link between the inner and outer cylindrical shells forming the composite shell. The method takes into account the two shells geometry and the physical-mechanical properties of the elastic foundation material. The method described presents the plane problem of the elasticity theory as a system with the finite number of degrees of freedom in the transverse direction, while maintaining the infinite number of degrees of freedom in the longitudinal direction.


References
[1] Vlasov V.Z., Leontev N.N. Balki, plity i obolochki na uprugom osnovanii [Beams, plates and shells on the elastic foundation]. Moscow, Fizmatlit Publ., 1960, 490 p.
[2] Dimitrienko Yu.I. Nelineynaya mekhanika sploshnoy sredy [Nonlinear continuum mechanics]. Moscow, Fizmatlit Publ., 2009, 624 p.
[3] Dimitrienko Yu.I. Universalnye zakony mekhaniki i elektrodinamiki sploshnoy sredy [Universal continuum laws of mechanics and electrodynamics]. Moscow, BMSTU Publ., 2011, 560 p.
[4] Rabotnov Yu.N. Problemy mekhaniki deformiruemogo tverdogo tela [The problems of solid mechanics]. Selected works. Moscow, Nauka Publ., 1991, 194 p.
[5] Bushuev A.Yu., Farafonov B.A Matematicheskoe modelirovanie i chislennye metody - Mathematical Modeling and Computational Methods, 2014, no. 2, pp. 101-114.
[6] Dimitrienko Yu.I., Dimitrienko I.D., Sborschikov S.V. Applied Mathematical Sciences, 2015, vol. 9, no. 145, pp. 7211-7220. Available at: http://dx.doi.org/10.12988/ams.2015.510641 http://www.m-hikari.com/ams/ams-2015/ams-145-148-2015/p/dimitrienkoAMS145-148-2015.pdf
[7] Okopny Yu.A., Rodin V.P., Charkov I.P. Mekhanika materialov i konstruktsiy [Mechanics of Materials and Structures]. Moscow, Mashinostroenie Publ., 2001, 407 p.
[8] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 1. Tenzornyy analiz [Continuum Mechanics. In 4 vols. Vol. 1. Tensor Analysis]. Moscow, BMSTU Publ., 2011, 463 p.
[9] Feodosev V.I. Izbrannye zadachi i voprosy po soprotivleniyu materialov [Selected problems and questions about the strength of materials]. Moscow, Nauka Publ., 1993, 400 p.
[10] Zhilin P.A. Aktualnye problemy mekhaniki [Actual Problems in Mechanics]. St. Petersburg Polytechnic University Publ., 2006, 306 p.
[11] Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some basic problems of the mathematical theory of elasticity]. Moscow, Nauka Publ., 1966, 708 p.
[12] Butina T.A., Dubrovin V.M. Inzhenerny zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2013, iss. 7 (19). DOI: 10.18698/2308-6033-2013-7-844
[13] Butina T.A., Dubrovin V.M. Inzhenerny zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2014, iss. 3 (27). DOI: 10.18698/2308-6033-2014-3-1231
[14] Bakulin V.N. Dinamicheskie zadachi nelineynoy teorii mnogosloynykh obolochek [Dynamic problems of the nonlinear theory of multilayer shells]. Moscow, Nauka Publ., 1998, 462 p.
[15] Frolov K.V. Izbrannye trudy [Selected works]. Moscow, Nauka Publ., 2007, 526 p.
[16] Dubrovin V.M., Butina T.A. Inzhenerny zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2013, iss. 9 (21). DOI: 10.18698/2308-6033-2013-9-957
[17] Butina T.A., Dubrovin V.M. Inzhenerny zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2012, iss. 2. DOI: 10.18698/2308-6033-2012-2-44