Mathematical model for computing parameters of a longitudinally corrugated conical shell supported by frames
Authors: Dudchenko A.A., Sergeev V.N.
Published in issue: #8(80)/2018
DOI: 10.18698/2308-6033-2018-8-1794
Category: Mechanics | Chapter: Dynamics, Strength of Machines, Instruments, and Equipment
The paper investigates the stress-strain state of a thin shell using a mathematical model according to which a longitudinally corrugated shell may be represented by a continuous set of stringers oriented along the generatrices of a conical surface. The stringers are only linked longitudinally, each of them undergoing just tension-compression and bending in the axial section plane of the rotational shell. A conical shell supported by a discrete set of frames is a discrete-continuous system studied by means of the generalised function approach. The authors derived integrodifferential conical shell equilibrium equations in terms of generalised displacements, which are of interest for those specialising in calculating thin shell structure parameters
References
[1] Karpov V.V., Semenov A.A. Inzhenerno-stroitelnyy zhurnal — Magazine of Civil Engineering, 2013, no. 5, pp. 100–106.
[2] Klimanov V.I, Timashev S.A. Nelineynye zadachi podkreplennykh obolochek [Nonlinear problems for supported shells]. Sverdlovsk, Ufa Scientific Centre of the USSR Academy of Sciences, 1985, 291 p.
[3] Novitskiy V.V. Delta-funktsiya i ee primenenie v stroitelnoy mekhanike [Delta function and its application in structural mechanics]. Raschet prostranstvennykh konstruktsiy [Calculating parameters of three-dimensional structures], 1962, issue 8, pp. 207–245.
[4] Obraztsov I.F., Onanov G.G. Stroitelnaya mekhanika skoshennykh tonkostennykh sistem [Structural mechanics of sloping thin-walled systems]. Moscow, Mashinostroenie Publ., 1973, 660 p.
[5] Ovcharov A.A., Brylev I.S. Sovremennye problemy nauki i obrazovaniya — Modern problems of science and education, 2014, no. 3. Available at: http://science-education.ru/ru/article/view?id=13235 (accessed April 15, 2018).
[6] Onanov G.G. Doklady Akademii nauk SSSR — Proceedings of the USSR Academy of Sciences, 1970, vol. 1, no. 5, pp. 997–1000.
[7] Semenov A.A., Ovcharov A.A. Inzhenernyy vestnik Dona — Engineering journal of Don, 2014, vol. 29, no. 2, pp. 74–77.
[8] Kecs W., Teodorescu P.P. Introducere in teoria distributiilor cu aplicatii in tehnica [Introduction to theory of generalised functions with engineering applications]. Bucharest, Editura Tehnică, 1975, 412 p. [In Russ.: Kecs W., Teodorescu P.P. Vvedenie v teoriyu obobshchennykh funktsiy s prilozheniyami v tekhnike. Pobedrya B.E., ed. Moscow, Mir Publ., 1978, 518 p.].
[9] Lazaryan V.A., Konashenko S.I. Obobshchennye funktsii v zadachakh mekhaniki [Generalised functions in problems of mechanics]. Kiev, Naukova Dumka Publ., 1974, 192 p.
[10] Mikhaylov B.K. Plastiny i obolochki s razryvnymi parametrami [Plates and shells with discontinuous parameters]. Leningrad, Leningrad State University, 1980, 196 p.
[11] Shalashilin V.I. Problemy ustoychivosti v stroitelnoy mekhanike [Stability problems in structural mechanics]. Moscow, State publishing house for construction literature, 1965, pp. 339–346.
[12] Shalashilin V.I. Izvestiya AN SSSR. Mekhanika i mashinostroenie — Journal of the Academy of Sciences, USSR. Engineering Sciences Branch. Mechanics and Machine Building, 1964, no. 3, pp. 131–135.
[13] Komissarova G.L. Ustoychivost prodolno-gofrirovannoy obolochki, podkreplennoy i nepodkreplennoy shpangoutami [Stability of a longitudinally corrugated conical shell as supported by frames and without them]. Trudy IV Vsesoyuznoy konferentsii po teorii plastin i obolochek [Proc. of the 4th pan-Union conference on plate and shell theory]. Yerevan, 1964.
[14] Dudchenko A.A., Sergeev V.N. Vestnik PNIPU. Ser. Mekhanika — PNRPU Mechanics Bulletin, 2017, no. 2, pp. 60–77.