Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Algorithms to deal with information uncertainty with point estimation of network flows

Published: 11.10.2014

Authors: Gagarin Yu.E.

Published in issue: #7(31)/2014

DOI: 10.18698/2308-6033-2014-7-1285

Category: Information technology | Chapter: Computer systems and networks

The paper considers the algorithms to deal with errors in initial information in network structure systems and problems of their optimization. We support the study with the sample problem on maximum flow and show how to employ the algorithms.


References
[1] Greshilov A.A. Matematicheskie metody priniatiya resheniy [Mathematical methods of decision-making]. Moscow, Bauman MSTU Publ., 2006, 584 p.
[2] Yensen P., Barnes D. Potokovoe programmirovanie [Flow programming]. [in Russian]. Moscow, Radio i svyaz’ Publ., 1984, 392 p.
[3] Bard Y. Nelineinoe otsenivanie parametrov [Nonlinear parameter estimation]. Moscow, Statistika Publ., 1979, 349 p.
[4] Uspensky A.B., Fedorov V.V. Vychislitel’nye aspekty MNK pri analize i planirovanii regressionnykh eksperimentov [Computational aspects of MLS in the analysis and design of regression experiments]. Moscow, Bauman MSTU Publ., 1975, 168 p.
[5] Gleser L.J. Statist. Anal. Meas. Error Models and Appl., Proc. AMS-IMS-SIAM, 1990, pp. 99-114.
[6] Fedorov V.V. Teoriya optimal’nogo eksperimenta [Theory of optimal experiment]. Moscow, Nauka Publ., 1971, 312 p.
[7] Schater D.W. Statist. Anal. Meas. Error Models and Appl., Proc. AMS-IMS-SIAM, 1990, pp. 129-138.
[8] Fuller W.A. Measurement error models. New York ect., Wiley, 1987, 440 p.