Simplex method for solving the brachistochrone problem at state and control constraints
Published: 08.10.2014
Authors: Krasnoschechenko V.I.
Published in issue: #6(30)/2014
DOI: 10.18698/2308-6033-2014-6-1252
Category: Information technology | Chapter: Automated control systems
In this paper we consider the solution of the brachistochrone problem for linear time invariant objects with the scalar constrained control and state parallelepiped constraints. In the given algorithm we employ the transition from the brachistochrone problem to a problem of linear programming which is solved by the simplex method. The proposed method belongs to the group of control parameterization methods.
References
[1] Gamkrelidze R.V. Izvestiya AN SSSR - Proc. Acad. Sci. USSR., 1960, no. 3, pp. 315-356.
[2] Dubovitsky A.Ya., Milyutin A.A. Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki - Journal of Computational Mathematics and Mathematical Physics, 1968, vol. 8, no. 4, pp. 725-779.
[3] Pupkov K.A., Faldin N.V., Egupov N.D. Metody sinteza optimal’nykh sistem avtomaticheskogo upravleniya [Methods for the synthesis of optimal automatic control systems]. Moscow, Bauman MSTU Publ., 2000, 512 p.
[4] Buskens C., Maurer H. J. of Comput.&Appl. Math, 2000, vol. 120, no. 1-2, pp. 85-108.
[5] Teo K.L., Goh C.J., Wong K.H. A unified computational approach for optimal control problems. New York: Longman Scientific and Technical, 1991, 267 p.
[6] Xing A.Q. J. of Math. Analysis & Appl.,1984, vol. 186, pp. 514-522.
[7] Balandin D.V., Kogan M.M. Lineinye matrichnye neravenstva v sinteze regulyatorov pri ogranicheniyakh na upravlenie i fazovye koordinaty [Linear matrix inequalities in the synthesis of regulators with restrictions on the control and phase coordinates].Trudy VIII Mezhdunarodnoi konferentsii "Identifikatsiya sistem i zadachi upravleniya" SICPRO’09 (Moskva, 26-30yanvarya 2009 g.) [Proceed. of the VIII Intern. Conf. "System Identification and Control Problems" SICPRO’09 (Moscow, 26-30 Jan. 2009)], 2009, pp. 31-34.
[8] Blanchini F. Automatica, 1995, no 31, pp. 451-461.
[9] Taha H.A. Operations Research: An Introduction. 7th Ed. New Jersey, Pearson Education Inc., 2003, 905 p.