Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Hardy-Ramanujan formula and thermodynamics of quantum string

Published: 09.10.2014

Authors: Shishanin A.O.

Published in issue: #3(27)/2014

DOI: 10.18698/2308-6033-2014-3-1272

Category: Basic science | Chapter: Physics

For partitions of natural numbers, there is an asymptotic formula of the Hardy-Ramanujan. In this paper we propose to compare this formula with the number of microstates, using entropy calculation of the quantum string by means of Euler-Maclaurin formula. The work briefly touches upon a different approach, using counting the number of states through the inverse Laplace transformation of the partition function.

[1] Endryus G. Teoriya razbieniy [The theory of partitions]. Moscow, Nauka Publ., 1982, 256 p.
[2] Hardy G.H., Ramanujan S. Asymptotic Formulae in Combinatory Analysis. Proc. London Math. Soc., 1918, vol. 17, pp. 75-115.
[3] Tsvibakh B. Nachal’nyi kurs teorii strun [Initial course of string theory]. Moscow, Editorial URSS Publ., 2011, 784 p.
[4] Kubo M. Statisticheskaya mekhanika [Statistical mechanics]. Moscow, Mir Publ., 1967, 452 p.
[5] Grin M., Shvarts Dzh., Vitten E. Teoriya superstrun [Superstring theory]. Vol. 1. Moscow, Mir Publ., 1990, 518 p.
[6] Atick J.J., Witten E. The Hagedorn Transition and the Numbers of the Degrees of Freedom of String Theory. Nucl. Phys., 1988, vol. B310, pp. 291-334.
[7] Kogan Ya.I. Vortices on the World Sheet and String’s Critical Dynamics. JETP Lett, 1987, vol.45, pp. 709-712.
[8] Sathiapalan B. Vortices on the String World Sheet and Constraints on Toral Compactification. Phys. Rev. D, 1987, vol. 35, p. 3277.