Motion of a solid body in a viscous fluid at high Reynolds numbers
Authors: Gurchenkov A.A.
Published in issue: #3(27)/2014
DOI: 10.18698/2308-6033-2014-3-1322
Category: Basic science | Chapter: Mathematics
We consider a solid body of an arbitrary geometry moving in a viscous incompressible fluid. Movement of the body is assumed to be given. We examine the case of perturbed motion of a solid body relatively to the programmed motion, namely weakly perturbed libration movement. Two Cartesian coordinate systems are introduced. One is fixed in inertial space; the other is rigidly connected with the solid body. The position of the related coordinate system in relation to the fixed one is characterized by the displacement vector and rotation vector, which are considered to be small in terms of the proximity of the second order. The problem is solved in the linear formulation. The solution is found by the method of boundary layer, and the functions satisfying the linearized Navier - Stokes equations are taken as the initial approximation.
References
[1] Krein S.G., Moiseev N.N. O kolebaniyakh tverdogo tela, soderzhashchego zhidkost’ so svobodnoi poverkhnost’yu [Oscillations of a solid body containing a liquid with a free surface]. PMM[App. Math., Inf. and Mech.], 1957, vol. 21, iss. 2, pp. 97-114.
[2] Gurchenkov A.A., Nosov M.V., Ivanov I.M. Optimal’noe upravlenie dvizheniem volchka s zhidkim napolneniem [Optimal control of movement of the liquid-filled top]. XVII Vserossiyskaya konferentsiya "Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov i resheniezadach matematicheskoifiziki" [XVII National Conference "Theoretical Foundations and construction of numerical algorithms and solution of problems of mathematical physics."]. Abrau-Dyurso, 15-21 September, 2008, pp. 143-144.
[3] Gurchenkov A.A., Esenkov A.S., Tsurkov V.I. Izvestiya RAN. Teoriya i sistemy upravleniya - Proceedings of the Russian Academy of Sciences. Control Theory and Systems, 2006, no. 1, pp. 135-142.
[4] Gurchenkov A.A., Esenkov A.S., Tsurkov V.I. Izvestiya RAN. Teoriya i sistemy upravleniya - Proceedings of the Russian Academy of Sciences. Control Theory and Systems, 2006, no. 3, pp. 82-89.
[5] Gurchenkov A.A., Esenkov A.S., Tsurkov V.I. Avtomatika i telemekhanika - Automatics and Telemechanics, 2007, no. 2, pp. 81-94.
[6] Gurchenkov A.A., Nosov M.V., Tsurkov V.I. Upravlenie vrashchayushchimisya tverdymi telami s zhidkostyu [Control of rotating solids with the fluid]. Moscow, Fizmatlit Publ., 2011, 202 p.
[7] Gurchenkov A.A., Nosov M.V., Tsurkov V.I. Control of Fluid-Containing Rotating Rigid Bodies. CRC Press, 2013, p. 147.
[8] Gurchenkov A.A. Izv. vuzov. Ser. Priborostroenie - University Proceed. Ser. Instrument Engineering, 2001, vol. 44, no. 2, p. 44.
[9] Gurchenkov A.A. Inzhenerno-fizicheskiy zhurnal - Journal of Engineering Physics, 2002, vol. 75, no. 3, pp. 28-32.
[10] Gurchenkov A.A., Yalamov Y.I. Unsteady viscous fluid flow between rotating parallel walls with allowance for thermal slip along one of them. Doklady Physics, 2002, vol. 47, no 1, pp. 25-28.
[11] Gurchenkov A.A. J. of Engineering Physics and Thermo Physics, 2002, vol. 75, no. 3, p. 554.
[12] Gurchenkov A.A. Prikladnaya mekhanika i tekhnicheskaya fizika - Applied Mechanics and Technical Physics, 2001, vol. 42, no. 4, pp. 48-51.
[13] Gurchenkov A.A., Korneev V.V., Nosov M.V. Prikladnaya matematika i mekhanika - Applied Mathematics and Mechanics, 2008, vol. 72, no. 6, pp. 904-911.
[14] Gurchenkov A.A. Dokl. Akademii nauk - Acad. Sci. Reports, 2002, vol. 382, no. 4, p. 476.
[15] Gurchenkov A.A., Nosov M.V., Tsurkov V.I. Control of Fluid-Containing Rotating Rigid Bodies. CRS Press, 2013, 147 p.
[16] Gurchenkov A.A. Prikladnaya matematika i mekhanika - Applied Mathematics and Mechanics, 2002, vol. 66, iss. 2, pp. 251-255.
[17] Gurchenkov A.A., Eleonskiy V.M., Kulagin N.E. Sloistye struktury v nelineinykh vektornykh polyakh [Layered structures in nonlinear vector fields]. Moscow, Comp. Center RAS Publ., 2007, 177 p.
[18] Gurchenkov A.A., Kulagin N.E. Ob uzorakh simmetrii v prostykh modelyakh nelineinogo skalyarnogo polya [Patterns of symmetry in simple models of nonlinear scalar field]. Moscow, Comp. Center RAS, 2004, 84 p.
[19] Gurchenkov A.A., Moroz 1.1., Popov N.N. Inzhenernyi zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2013, iss. 9. Available at: http://engjournal.ru/catalog/appmath/hidden/1166.html
[20] Gurchenkov A.A., Romanenkov A.M. Inzhenernyi zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2013, iss. 2. Available at: http://engjournal.ru/catalog/appmath/hidden/613.html
[21] Gurchenkov A.A., Egorova E.K. Inzhenernyi zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2013, iss. 12. Available at: http://engjournal.ru/catalog/appmath/hidden/1167.html
[22] Gurchenkov A.A. Inzhenernyi zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2013, iss. 2. Available at: http://engjournal.ru/catalog/appmath/hidden/603.html
[23] Gurchenkov A.A. Inzhenernyi zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2012, iss. 7. Available at: http://engjournal.ru/articles/297/297.pdf
[24] Gurchenkov A.A. Dinamika zavikhrennoi zhidkosti v polosti vrashchayushchegosya tela [Dynamics of swirling liquid in the cavity of the rotating body]. Moscow, Fizmatlit Publ., 2010, 221 p.
[25] Mironov A.A., Tsurkov V.I. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki - Computational Mathematics and Mathematical Physics, 1993, vol. 33, no. 2.
[26] Tsurkov V.I. Aggregation in a branch manufacturing problem and its extension. Proc. 13th IFAC Symposium on Information Control Problems in Manufacturing, INCOM ‘09, 2009, pp. 310-312.
[27] Mironov A.A., Tsurkov V.I. Dokl. Akademii nauk-Acad. Sci. reports, 1994, vol. 336, no. 1.