Characteristic exponents of periodic solutions of Hamiltonian systems and the necessary conditions of stability
Published: 09.12.2014
Authors: Pankratov A.A.
Published in issue: #12(36)/2014
DOI: 10.18698/2308-6033-2014-12-1350
Category: Basic science
The article considers Hamiltonian system with а small parameter (the main task of the dynamics in the terminology of Poincare). The structure of the decomposition of the characteristic exponents of periodic solutions in series in integer and fractional powers of the small parameter was investigated. The main members in these decompositions are obtained, necessary stability conditions of periodic decisions were found.
References
[1] Poincare H. Les methodes nouvelles de la mécanique céleste. In 3 vols. Vol. 1. Paris, 1892-97.
[2] Kozlov V.V. Metody kachestvennogo analiza v dinamike tverdogo tela [Methods of qualitative analysis in the dynamics of a rigid body]. Moscow, MSU Publ., 1984, 324 p.
[3] Barkin Yu.V., Pankratov A.A. Izvestiya ANSSSR. Mekhanika Tverdogo Tela - Mechanics of Solids, 1987, no. 2, pp. 25-33.
[4] Barkin Yu.V., Pankratov A.A. Prikladnaya Matematika i Mekhanika - Journal of Applied Mathematics and Mechanics, 1987, vol. 51, issue. 2, pp. 29-41.
[5] Pankratov A.A. Inzhenernyi zhurnal: nauka i innovatsii - Engineering Journal: Science and Innovation, 2012, issue 7. Available at: http://engjournal.ru/articles/295/295.pdf
[6] Yakubovich V.A., Starzhinsky V.M. Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya [Linear differential equations with periodic coefficients and their applications]. Moscow, Nauka Publ., 1972, 719 p.