Simulating the process of filling the fuel lines of the upper stages liquid rocket propulsion systems under flight conditions
Authors: Diesperov N.V., Polyanskiy A.R., Sapozhnikov V.B.
Published in issue: #10(154)/2024
DOI: 10.18698/2308-6033-2024-10-2394
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts
The paper proposes a mathematical model to assess parameters of the fuel lines filling process in the upper stage liquid rocket propulsion systems after partial vacuumization under the flight conditions. This problem arises, in particular, in preparation to igniting the upper stage engine. The upper stage is initially positioned on the launch vehicle at the flight passive stage. The fuel line section before entering the engines is filled with the preservative gas. Before the upper stage separation from the launch vehicle, the preservation gas is removed in preparation for engine start. However, complete vacuum in the fuel line is not achieved, and the low pressure rarefied gas stays in the line. With the shut-off valve open at the line inlet and the spreading fuel component front, this gas is compressing. It results in a radical increase in pressure in the supply line, which theoretically could lead to its destruction. Therefore, assessing pressure pulsations in this process is an important engineering problem that should be solved at the early design stages.
EDN FRLIXS
References
[1] Aleksandrov A.A., Khartov V.V., Novikov Yu.M., Krylov V.I., Yagodnikov D.A. Sovremennoe sostoyanie i perspektivy razrabotki kapillyarnykh toplivozabornykh ustroystv iz kombinirovannykh poristo-setchatykh materialov dlya kosmicheskikh apparatov s dlitelnym srokom aktivnogo ispolzovaniya [Current state and prospects of capillary fuel-intake units made of combined porous metals-mesh for long lifetime spacecraft]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2015, no. 6 (105), pp. 130–142.
[2] Novikov A.V., Yagodnikov D.A., Lokhanov I.V. et al. Materialnoe i metodicheskoe obespechenie issledovaniya gidrodinamicheskikh protsessov v toplivnykh bakakh s kapillyarnymi sistemami otbora kriogennykh komponentov [Material and methodological support for study of the hydrodynamic processes in fuel tanks with capillary systems for selection of the cryogenic components]. Vestnik NPO im. S.A. Lavochkina — Bulletin of Lavochkin Association, 2017, no. 35/1, pp. 36–42.
[3] Medvedev A.A. Innovatsionnye podkhody pri sozdanii raketno-kosmicheskoy tekhniki. Unifikatsiya kak proektnyi parametr upravleniya effektivnostyu. [Innovative approaches to creation of the rocket and space systems. Unification as a design parameter in performance management]. 2nd ed. Moscow, Dobroe Slovo i Ko Publ., 2020, 398 p.
[4] Mukhamedov L.P. Osnovy proektirovaniya transportnykh kosmicheskikh sistem [Fundamentals of designing the transport space systems]. Moscow, BMSTU Publ., 2018, 266 p.
[5] Liseykin V.A., Moiseev N.F., Saydov G.G., Frolov O.P. Osnovy teorii ispytaniy. Eksperimentalnaya otrabotka raketno-kosmicheskoy tekhniki [Fundamentals of the testing theory. Experimental development of the rocket and space systems]. V.K. Chvanov, ed. Moscow, Mashinostroenie–Polet/Viart Plus Publ., 2015, 265 p.
[6] Sapozhnikov V.B., Korolkov A.V. Matematicheskoe modelirovanie protsessa oporozhneniya toplivnogo baka letatelnogo apparata v usloviyakh orbitalnogo poleta [Mathematical simulation of the process of emptying the flying vehicle fuel tank under the orbital flight conditions]. In: Physical and Mathematical Problems of Advanced Technology Development: Abstracts of International Scientific Conference, BMSTU, Moscow, 17–19 November 2014. Moscow, BMSTU Publ., pp. 80–81.
[7] Kuchkin V.N., Kuchkin K.V., Saydov G.G. Teoreticheskie osnovy razrabotki ispytatelnogo oborudovaniya dlya raketno-kosmicheskoy tekhniki [Theoretical foundations for developing test equipment for the rocket and space technology]. Moscow, Mashinostroenie/Mashinostroenie–Polet Publ., 2014, 359 p.
[8] Kolesnikov K.S., Kokushkin V.V., Borzykh S.V., Pankova N.V. Raschet i proektirovanie sistem razdeleniya stupeney rakety [Computation and design of the rocket stage separation systems]. Moscow, BMSTU Publ., 2006, 376 p.
[9] Polukhin D.A., Oreshchenko V.M., Morozov V.A. Otrabotka pnevmogidrosistem dvigatelnykh ustanovok raket-nositeley i kosmicheskikh apparatov s ZhRD [Development of pneumatic hydraulic systems of the launch vehicles and spacecraft propulsion systems with the liquid-propellant rocket engines]. Moscow, Mashinostroenie Publ, 1987, 248 p.
[10] Chelomey V.N., ed. Pnevmogidravlicheskie sistemy dvigatelnykh ustanovok s zhidkostnymi raketnymi dvigatelyami [Pneumohydraulic systems of propulsion systems with the liquid rocket engines]. Moscow, Mashinostroenie, 1978, 240 p.
[11] Belyaev N.M. Sistema nadduva toplivnykh bakov raket [Pressurization system of the rocket fuel tanks]. Moscow, Mashinostroenie, 1976, 336 p.
[12] Sapozhnikov V.B., Polyansky A.R., Korolkov A.V., Konstantinov S.B., Aleksandrov L.G. Eksperimentalnaya otsenka nevyrabatyvaemykh ostatkov topliva v bakakh s vnutribakavyemymi ustroystvami kapillyarnogo tipa dlya dvigatelnykh ustanovok kosmicheskikh apparatov [Experimental estimation of residual propellant in the fuel tanks with innertank capillary devices for the spacecraft propulsion systems]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 12. https://doi.org/10.18698/2308-6033-2019-12-1941