Gas flow multilevel mathematical model in the nozzle channel with a central body
Authors: Kaun Yu.V., Brykov N.A.
Published in issue: #9(129)/2022
DOI: 10.18698/2308-6033-2022-9-2211
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts
Supersonic non-isobaric jet outflow was studied under conditions of interaction with the slipstream. Multilevel mathematical model was compiled making it possible to analyze structure of the gas-dynamic flow in the vicinity of the nozzle channel central body at the aircraft take-off path (0...10 km). Multilevel approach to calculating thrust parameters of the nozzle channel with central body requires development of a physical and mathematical model of the non-stationary interdependent processes that characterize operation of the “aircraft – nozzle cluster – jet” system as a whole. At the same time, it is necessary to form mathematical models of the processes for different degrees of the task detailing, i.e. within each scale of the task (micro-, meso- and macro-scale). Mathematical model includes calculation of the aircraft traction characteristics, study of the interaction features between the jet, the central body and the slipstream.
References
[1] Koroteeva A.S. Gazodinamicheskie i teplofizicheckie protsessy v raketnykh dvigatelyakh tverdogo topliva [Gas-dynamic and thermophysical processes in the solid propellant rocket engines]. Moscow, Mashinostroenie Publ., 2004, 512 p.
[2] Lavrov L.N. Konstruktsii raketnykh dvigateley na tverdom toplive [Design of solid propellant rocket engines]. Moscow, Mashinostroenie Publ., 1993, 215 p.
[3] Hagemann G., Immich H., Nguyen T. V., Dumnov G. E. Advanced rocket nozzles. Journal of Propulsion and Power, 1998, vol. 14, no. 5, pp. 620–633.
[4] Ellis R.A., Berdoyes M. An example of successful international cooperation in rocket motor technology. Acta Astronautica, 2002, vol. 51, no. 1–9, pp. 47–56.
[5] Kalugin V.T. Aerogazodinamika organov upravleniya poletom letatelnykh apparatov [Aerogasdynamics of the aircraft flight controls]. Moscow, BMSTU Publ., 2004, p. 688.
[6] Ruf J.H., McConnaughey P.K. The plume physics behind aerospike nozzle altitude compensation and slipstream effect. Washington, USA, Paper No. 97–3217, Jul. 6–9, 1997.
[7] Kaun Yu.V., Brykov N.A., Chernyshov M.V. Numerical simulation of gas flow in nozzle channels with a central body. Journal of Physics: Conference Series, 2021, vol. 2094. DOI: 10.1088/1742-6596/2094/4/042083
[8] Ferlauto M., Ferrero A., Marsicovetere M., Marsilio R. Differential throttling and fluidic thrust vectoring in a linear aerospike. Int. J. Turbomach. Propuls. Power, 2021, vol. 6, no. 8. https://doi.org/10.3390/ijtpp6020008
[9] Volkov K.N., Emelyanov V.N., Pustovalov A.V. Sverkhzvukovye techeniya nevyazkogo szhimaemogo gaza v aerodinamicheskikh oknakh gazovykh lazerov [Supersonic flows of the inviscid compressible gas in the aerodynamic windows of gas lasers]. Vych. met. programmirovaniya — Numerical Methods and Programming, 2014, vol. 15, no. 4, pp. 712–725.
[10] Godunov S.K., Zabrodin A.V., Ivanov M.Ya. Chislennoye reshenie mnogo-mernykh zadach gazovoy dinamiki [Numerical solution of multidimensional problems in gas dynamics]. Moscow, Nauka Publ., 1976, 400 p.
[11] Avduevsky V.S., Ashratov E.A., Ivanov A.V., Pirumov U.G. Gazodinamika sverkhzvukovykh neizobaricheskikh strui. Moscow, Mashinostroenie Publ., 1989, 320 p.
[12] Garbaruk A.V., Strelets M.Kh., Shur M.L. Modelirovanie turbulentnosti v raschetakh slozhnykh techeniy [Turbulence simulation in calculations of complex flows]. St. Petersburg, Polytechnic University Publ., 2012.
[13] Alekseeva M.M., Kaun Y.V., Chernyshov M.V., Yatsenko A.A. Influence of surface permeability on gas-dynamic characteristics of high-speed flight. Journal of Physics: Conference Series, 2021, vol. 1959 (1), art. no. 012001.