Algorithm for computing kinematic characteristics of a flexible joint controlling a swiveling nozzle in a solid-propellant rocket engine
Authors: Kostikov Yu.V., Sumnitelnyy N.V., Ryazanov R.S.
Published in issue: #6(78)/2018
DOI: 10.18698/2308-6033-2018-6-1768
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts
In order to ensure a steady attitude and desired direction of spacecraft motion along a given trajectory, a swivelling control nozzle on a preloaded flexible joint may be installed in the housing of a solid-propellant rocket engine. The article describes an algorithm for analytically investigating the kinematics of a swivelling control nozzle in a solid-propellant rocket engine so as to achieve its desired performance. We present a general form of the mathematical function describing angular velocity variation in the moving part of the rocket engine for the case of a shock-free start-stop motion mode. We investigate whether it is possible to change the time limit parameter when the moving part of the nozzle deflects. We provide an algorithm for calculating the law of motion that takes into account inertial components of the nozzle. The study we carried out should make it possible to alter the direction of the spacecraft velocity vector so as to produce a desired deviation from the preset trajectory with minimum error
References
[1] Zaytsev N.N., Naberukhin D.G., Pyankov D.A. Vestnik PNIPU. Aerokosmicheskaya tekhnika — PNRPU Aerospace Engineering Bulletin, 2016, no. 46, pp. 108–110.
[2] Solomonov Yu.S., Lipanov A.M., ed. Tverdotoplivnye reguliruemye dvigatelnye ustanovki [Throttleable solid-propellant engines]. Moscow, Mashinostroenie Publ., 2011, 416 p.
[3] Fakhrutdinov I.Kh., Kotelnikov A.V. Konstruktsiya i proektirovanie raketnykh dvigateley tverdogo topliva [Design and development of solid-propellant rocket engines]. Moscow, Mashinostroenie Publ., 1987, 328 p.
[4] Volkov V.T., Yagodnikov D.A. Issledovanie i stendovaya otrabotka raketnykh dvigateley na tverdom toplive [Investigation and development testing of solid propellant rocket engines]. Moscow, Bauman Moscow State Technical University Publ., 2007, 296 p.
[5] Lavrov L.N., Bolotov A.A., Gapanenko V.I. Konstruktsii raketnykh dvigateley na tverdom toplive [Designs of solid-propellant rocket engines]. Moscow, Mashinostroenie Publ., 1993, 532 p.
[6] Mezhova M.P. Molodezhnyy nauchno-tekhnicheskiy vestnik — Youth Scientific and Technical Bulletin of BMSTU, 2015, no. 5. Available at: http://sntbul.bmstu.ru/doc/782286.html
[7] Organy upravleniya vektorom tyagi tverdotoplivnykh raket: raschet, konstruktivnye osobennosti, eksperiment [Thrust vector controls of solid-propellant rockets: calculation, design specifics, experiments]. Kuznetsov N.P., ed. Moscow, Izhevsk, Regular and Chaotic Dynamics Publ., 2006, 522 p.
[8] Bondarenko A.S., Demenev D.N., Zaytsev N.N. Vestnik PNIPU. Aerokosmi- cheskaya tekhnika — PNRPU Aerospace Engineering Bulletin, 2013, no. 34, pp. 64–66.
[9] Zhou J., Zhang J.L., Zhou F.Q. Research on multi-objective optimization sesign of thrust vector control actuator. Advanced Materials Research, 2012, vol. 591–593, pp. 15–20.
[10] Konstruktsiya i otrabotka RDTT [Design and testing of solid propellant rocket engines]. Vinitskiy A.M., ed. Moscow, Mashinostroenie Publ., 1980, 230 p.
[11] Frolov K.V., Popov S.A., Musatov A.K. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines]. Frolov K.V., ed. Moscow, Vysshaya Shkola Publ., 2003, 496 p.
[12] Timofeev G.A. Teoriya mekhanizmov i mashin. Kurs lektsiy [Theory of mechanisms and machines. A lecture course]. Moscow, Yurayt Publ., 2010, 351 p.
[13] Kaptsov O.V. Metody integrirovaniya uravneniy s chastnymi proizvodnymi [Integration methods for partial differential equations]. Moscow, FIZMATLIT Publ., 2009, 182 p.
[14] Utyashev A.R. Tr. Bratskogo gosudarstvennogo universiteta. Estestvennye i inzhenernye nauki — Proc. of Bratsk State University. Natural and Enginee-ring Sciences, 2007, vol. 2, pp. 57–59.