Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Simulation of the aircraft landing gear legs with the plastically deformable shock absorbers

Published: 23.06.2023

Authors: Sumerin A.A., Shcheglov G.A.

Published in issue: #6(138)/2023

DOI: 10.18698/2308-6033-2023-6-2284

Category: Aviation and Rocket-Space Engineering | Chapter: Strength and Thermal Conditions of Aircraft

The paper considers possibility of using a new depreciation scheme in regard to the wheeled three-column landing gear leg of the aerospace light aircraft based on using the three-section one-time crash box, which could be replaced during the inter-flight maintenance. Normal and abnormal operation of the landing gear legs was numerically simulated in the LS-DYNA package of the ANSYS software. Energy absorbing characteristics of the crash boxes with various geometry and several landing gear leg schemes were analyzed in order to identify the design having most predictable and forecasted deformations, as well as the balanced energy absorbing characteristics. It is shown that using the crash boxes, similar in design to those used in the vehicle passive safety systems, could significantly reduce the landing gear system weight of an orbital aerospace vehicle, while maintaining the required energy absorbing characteristics of the landing gear. Gain in weight compared to the aircraft classic shock absorber being similar in landing weight to that presented in the work was of 18.4 kg, or by 12.5 times.


References
[1] X-37 Technology Demonstrator: Blazing the trail for the next generation of space transportation systems. Facts. NASA. 2010. 2 p. Available at: http://www.nasa.gov/centers/marshall/pdf/100431main_x37-historical.pdfFS2003-09-121-MSFC (accessed May 17, 2023).
[2] Kitay uspeshno ispytal mnogorazovyi kosmicheskiy apparat [China successfully tested the reusable test spacecraft]. RIA Novosti. 06:55 08.05.2023. Available at: https://english.news.cn/20230508/c36cce46d7574db08de8eaa081492c1e/c.html (accessed May 17, 2023).
[3] Zhitomirskiy G.I. Konstruktsiya samoletov [Aircraft design]. Moscow, Innovatsionnoe Mashinostroenie Publ., 2018, 416 p.
[4] Podruzhin E.G., Stepanov V.M. Konstruktsiya i proektirovanie letatelnykh apparatov. Shassi [Construction and design of the aircraft. Landing Gear]. 2nd ed. Novosibirsk, Novosibirsk State Technical University Publ., 2020, 68 p.
[5] Kondrashov N.A. Proektirovanie ubirayushchikhsya shassi samoletov [Design of the aircraft retractable landing gear]. Moscow, Mashinostroenie, 1991, 224 p.
[6] Belyaev A.V., Zelentsov Vl.V., Shcheglov G.A. Sredstva vyvedeniya kosmicheskikh letatelnykh apparatov [Spacecraft launch vehicles]. Moscow, BMSTU Publ., 2007, 56 p.
[7] Khusainov A.Sh., Nikitin A.N. Modelirovanie deformatsii krash-boksov sovremennykh avtomobiley [Simulating deformation of the modern vehicle crush-box testing deformation]. Vestnik Ulyanovskogo gosudarstvennogo tekhnicheskogo universiteta — Herald of the UlSTU, 2012, no. 4 (60), pp. 28–32.
[8] Zuzov I.V., Zuzov V.N. Modelirovanie prodolnogo smyatiya perednikh lonzheronov kuzova legkovogo avtomobilya s uchetom napolniteley i initsiatorov deformatsii [Simulation of longitudinal collapse of the vehicle body front spars taking into account fillers and deformation initiators]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — BMSTU Journal of Mechanical Engineering, 2012, no. 2, pp. 42–45.
[9] Goncharov R.B., Zuzov V.N. Opredelenie kriteriev vybora parametrov materiala-napolnitelya v nesuschikh konstruktsiyakh karkasnogo tipa primenitelno k zadacham passivnoy bezopasnosti avtomobiley [On criteria of selecting filler material parameters in supporting thin-walled frame-type structures in relation to the tasks of cars and tractors passive safety]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 4 (88). https://doi.org/10.18698/2308-6033-2019-4-1865
[10] Lukovkin R.O., Shcheglov G.A. Analiz dinamiki protsessa vertikalnoy posadki kosmicheskogo apparata na posadochnom ustroystve s krash-oporami [Analysis of dynamics of the vertical landing process of a spacecraft using the landing gear with crash supports]. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika — Russian Aeronautics, 2017, no. 3, pp. 59–66. https://doi.org/10.3103/S1068799817030090
[11] Lukashevich V.P., Afanasyev I.B. Kosmicheskie Krylya [Space Wings]. Moscow, LenTa Stranstviy JSC Publ., 2009, 496 p.
[12] Ostoslavskiy I.V., Strazheva I.V. Dinamika poleta. Traektorii letatelnykh apparatov [Flight dynamics. Trajectories of aerial vehicles]. Moscow, Mashinostroenie Publ., 1969, 502 p.