Mathematical simulation model of the bus body stabilization electric drive roll in a turn
Authors: Sarach E.B., Gorelov V.A., Kositsyn B.B., Komissarov A.I., Kosolapov A.S.
Published in issue: #9(153)/2024
DOI: 10.18698/2308-6033-2024-9-2384
Category: Aviation and Rocket-Space Engineering | Chapter: Ground transport and technological means and complexes
The paper presents a mathematical simulation model of the bus body stabilization mechanism electric drive roll in a turn. The model makes it possible to select the drive parameters at the design stage taking into account the imposed restrictions in power, motion speed and drive stroke. The paper considers requirements to the mathematical simulation model of the bus body stabilization mechanism electric drive roll in a turn. The authors obtained the algorithm for stabilizing the bus body roll in a turn based on a signal from the suspension travel sensors; a study was performed in analyzing the system operation when the bus performed a typical maneuver for the varying drive parameters. It is concluded that the drive developed mathematical simulation model of the upper spring support motion adequately reflects the processes of maintaining roll in a curvilinear bus motion. Besides, it also allows taking into account the force and kinematic restrictions imposed by the drive. The developed algorithm counteracts the roll, operates on a signal from the suspension motion sensors, and makes it possible to select the drive parameters taking into account the imposed restrictions in order to reduce the body roll in a curvilinear motion.
EDN MQINXK
References
[1] Dyadchenko M., Kotiev G., Naumov V. Osnovy rascheta sistem podressorivaniya gusenichnykh mashin na EVM [Fundamentals of calculation of the crawler springing systems on computers]. Moscow, BMSTU Publ., 2002, 52 p.
[2] Zhileykin M., Kotiev G., Sarach E. Matematicheskoe modelirovanie sistem transportnykh sredstv [Mathematical simulation of the vehicle systems]. Moscow, BMSTU Publ., 2018, 98 p.
[3] Fominykh A., Zheglov L. Matematicheskaya model dvizheniya polnoprivodnoy kolesnoy mashiny po dorogam s tverdoy nerovnoy poverkhnostyu [A mathematical model of the all-wheels drive vehicle’s motion on a firm rough road]. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie — Science and Education. Electronic Scientific and Technical Journal, 2013, iss. 11. Available at: http://technomag.bmstu.ru/doc/645575.html DOI: 10.7463/1113.0645575
[4] Sidorov V.N., Tint Naing Vin, Alakin V.M. Matematicheskoe modelirovanie protsessov kombinirovannoy rychazhno-elektromagnitnoy sistemy poperechnoy stabilizatsii [Mathematical modeling of the process of a combined lever and electromagnetic system of lateral stabilization]. Mir transporta i tekhnolo-gicheskikh mashin — The World of Transport and Technological Machines, 2023, no. 3–4 (82), pp. 18–25.
[5] Sarach E., Kurasova M., Lichagov А. Otsenka bokovoy zhestkosti pnevmogidravlicheskoy podveski mnogoosnoy kolesnoy mashiny s ispolzovaniem imitatsionnogo matematicheskogo modelirovaniya [Evaluation of the lateral stiffness of the pneumohydraulic suspension of a multi-axle wheeled vehicle using imitational mathematical modeling]. Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI — Izvestiya MGTU MAMI, 2019, no. 2 (40), pp. 33–40.
[6] Blundell M., Harty D. The Multibody Systems Approach to Vehicle Dynamics. Oxford, Elsevier Butterworth-Heinemann, 2004, 518 p.
[7] EILER. Programmnyi kompleks avtomatizirovannogo dinamicheskogo analiza mnogokomponentnykh dinamicheskikh sistem [EULER. Software package for automated dynamic analysis of the multi-component mechanical systems]. Available at: http://www.eular.ru (accessed September 28, 2023).
[8] Modelirovanie dinamiki mekhanicheskikh sistem [Simulation of the mechanical systems dynamics]. Universalnyi mekhanizm — Universal Mechanism. Available at: http://www.umlab.ru (accessed September 28, 2023).
[9] Adams. The Multibody Dynamics Simulation Solution. Available at: http://www.mscsoftware.com/product/adams (accessed September 28, 2023).
[10] Pogorelov D., Rodikov A., Kovalev R. Parallel computations and co-simulation in universal mechanism software. Part 1: Algorithms and implementation. Transport problems, 2019, vol. 14, no. 3, pp. 163–175.
[11] González F., Naya M.A., Luaces A., González M. On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics. Multibody System Dynamics, 2011, vol. 25, pp. 461–483.
[12] Vaculín O., Krüger W. R., Valášek M. Overview of coupling of multibody and control engineering tools. Vehicle System Dynamics, 2004, vol. 41, no. 5, pp. 415–429.
[13] Datar M., Stanciulescu I., Negrut D. A co-simulation framework for full vehicle analysis. SAE Technical Paper, 2011, no. 2011-01-0516.
[14] Larin V. Teoriya dvizheniya polnoprivodnykh kolesnykh mashin [Theory of movement of the all-wheel drive vehicles]. Moscow, BMSTU Publ., 2010, 391 p.
[15] Komissarov A., Sarach E., Kositsyn B., Gorelov1 V., Kosolapov A. Razrabotka matematicheskoy modeli dlya podbora parametrov algoritma stabilizatsii kuzova gorodskogo avtobusa v programmnom komplekse avtomatizirovannogo analiza dinamiki sistem tel [MBS model for the city bus body stabilization system algorithm parameter adjustment]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2023, iss. 11. https://doi.org/10.18698/2308-6033-2023-11-2313