Selecting design parameters for a BOT small upper stage pneumohydraulic system based on the 1D simulation
Authors: Georgiev A.F., Trudonoshin V.A., Kurdzhiev Yu.V., Verzilin S.S., Nikulin D.S.
Published in issue: #11(155)/2024
DOI: 10.18698/2308-6033-2024-11-2400
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
The paper presents results of solving the problem of selecting architecture and evaluation of the pneumatic hydraulic system design parameters in developing the BOT small upper stage provided by requirements imposed on the spacecraft feasibility. The architecture selection task is solved by using a complex mathematical model of a small upper stage that reflects interaction of all the small upper stage systems, including the external conditions. The pneumatic hydraulic system operation parameters and the requirement to use the thermostat system are selected using the detailed system model. All models are developed in the domestic 1D-simulation software package, i.e. dynamic system simulation. As a result, the minimum required volumes for fuel component tanks, pneumatic hydraulic system operating modes are determined, the need to use the tank thermostat system is shown, the energy required to maintain the fuel components temperature is assessed, and the rational operating mode for the cruise engines is identified.
EDN FBWKTS
References
[1] LLC SPECTRUM X official site. Available at: https://spectrx.ru/ (accessed February 15, 2024).
[2] NASA Systems Engineering Handbook. Washington, National Aeronautics and Space Administration, 2013, 360 p.
[3] Kyurdzhiev Y.V., Chernyshev A.V. Obyektivno-orientirovannyi podkhod v modelirovanii agregatov pnevmaticheskikh sistem [Object-oriented approach in modeling pneumatic system devices]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana — Science and Education: Scientific Edition of BMSTU, 2014, no. 11, pp. 170–187. Available at: https://elibrary.ru/download/elibrary_22749637_87127816.pdf
[4] Bubnov V.A. Raschet mestnykh soprotivleniy v protochnoy chasti gidroprivoda [Calculation of local resistance in the flow part of a hydraulic drive]. Vestnik mashinostroeniya, 1989, no. 11, pp. 17–20.
[5] Trudonoshin V.A., Fedoruk V.G. Reshenie obratnoy zadachi dinamiki s pomoschyu universalnykh sistem modelirovaniya [Solving the inverse problem of dynamics using the universal simulation systems]. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie — Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2014, no. 1, pp. 94–100.
[6] Verzhbitsky V.M. Osnovy chislennykh metodov [Fundamentals of numerical methods]. Moscow, Vysshaya Shkola Publ., 2002, 421 p.
[7] Skvortsov L.M. Postroenie i analiz adaptivnykh odnoshagovykh metodov chislennogo resheniya zhestkikh zadach [Construction and analysis of explicit adaptive one-step methods for solving stiff problems]. Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki — Computational Mathematics and Mathematical Physics, 2020, no. 7, pp. 1111–1125.
[8] Donskoy A.S. Modelirovanie i raschet pnevmaticheskikh privodov [Simulation and computation of the pneumatic drives]. St. Petersburg, Sankt-Peterburgskiy Politekhnicheskiy Universitet Petra Velikogo Publ., 2017, 85 p.
[9] Bubnov V.A. O gazodinamicheskikh techeniyakh idealnogo gaza [On gas-dynamic flows of an ideal gas]. Vestnik MGPU. Ser. Estestvennye nauki — Vestnik Moscow City University Scientific Journal. Natural Sciences, 2015, no. 4, pp. 25–37.
[10] Katalog produktsii 2020 [Product catalog 2020]. Nizhnyaya Salda, Nauchno-issledovatelskiy Institut Mashinostroeniya Publ., 2020, 44 p.
[11] Efimochkin A.F. Proektirovanie printsipialnykh pnevmogidravlicheskikh skhem zhidkostnykh raketnykh dvigateley [Design of principal pneumatic-hydraulic circuits for the liquid-propellant rocket engines]. Voronezh, Voronezhskiy Gosudarstvennyi Tekhnicheskiy Universitet Publ., 2010, 264 p.
[12] Dobrovolsky V.M. Zhidkostnye raketnye dvigateli [Liquid-propellant rocket engines]. Moscow, BMSTU Publ., 2005, 488 p.