Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

The Tsai—Melo invariants-based computation of the main mechanical characteristics for the polymer composite material monolayer

Published: 17.09.2024

Authors: Basharov E.A.

Published in issue: #9(153)/2024

DOI: 10.18698/2308-6033-2024-9-2387

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The paper substantiates the Tsai–Melo computation method in determining the monolayer elastic constants of the layered polymer composite material (PCM). It develops an algorithm and a computation program in the MS Excel based on the Visual Basic for Applications (VBA) built-in programming language to compute main mechanical characteristics of a PCM layer based on the Tsai–Melo invariants. The paper provides an example in computing the composite monolayers selected for testing. Tables, diagrams and graphs of the obtained monolayer mechanical characteristics for different options of laying the composite package selected for testing are compiled. Computation accuracy is assessed in comparison with calculations in the ANSYS package and the results of testing the PCM samples.

EDN JZESNL


References
[1] Basharov E.A., Yerkov A.P. Metod rascheta mnogosloynogo paketa iz polimernogo kompozitsionnogo materiala s uchetom vybora kriteriya prochnosti [The method of calculation for multilayer package of composite with given choice of strength criterion]. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal “Polet” — All-Russian Scientific and Technical Journal “Polyot” (“Flight”), 2018, no. 6, pp. 39–53. Available at: http://www.ros-polet.ru/files/archiv/pl1618_web.pdf (accessed April 10, 2023).
[2] Basharov E.A. Otsenka staticheskoy prochnosti obraztsov iz polimernykh kompozitsionnykh materialov v raschetnykh programmakh MS.Excel i ANSYS s uchetom vybora kriteriya prochnosti [Static strength assessment samples from polymeric composite materials in the MS.Excel and ANSYS calculation programs accounting for selection of the strength criterion]. Obscherossiyskiy nauchno-tekhnicheskiy zhurnal “Polyot” — All-Russian Scientific-Technical Journal “Polyot” (“Flight”), 2021, no. 12, pp. 31–38. Available at: http://www.ros-polet.ru/files/archiv/pl1221_web.pdf (accessed April 10, 2023).
[3] Basharov E.A. Sravnitelnyi analiz rezultatov rascheta obraztsov iz PKM v raschetnoy programme MS.Excel i ANSYS s uchetom vybora kriteriya prochnosti s resultatami ikh staticheskikh ispytaniy [Comparative analysis of the calculation result of samples from PCM in the MS.Excel and ANSYS calculation programs accounting for selection of the strength criterion with results of their static testing]. Obscherossiyskiy nauchno-tekhnicheskiy zhurnal “Polyot” — All-Russian Scientific-Technical Journal “Polyot” (“Flight”), 2022, no. 6, pp. 3–12. Available at: http://www.ros-polet.ru/files/archiv/pl1221web.pdf (accessed April 10, 2023).
[4] Tsai S.W., Pagano N.J. Invariant properties of composite materials. In: Composite Materials Workshop. Tsai S.W., Halpin J.C. and Pagano N.J. (Editors). St. Louis, Missouri, 1967, Technomic Publishing Company, 1968, pp. 233–253.
[5] Tsai S.W., Wu E.M. A general theory of strength for anisotropic materials. Journal of Composite Materials, 1971, vol. 5, pp. 58–80.
[6] Tsai S.W., Melo J.D.D. An invariant-based theory of composites. Composite Science and Technologies, 2014, vol. 100, pp. 237–243. https://doi.org/10.1016/j.compscitech.2014.06.017
[7] Vasiliev V.V. Mechanics of structures made of composite materials. Moscow, Mashinostroenie Publ., 1988, 272 p.
[8] Vasiliev V.V., Protasov V.D., Bolotin V.V. Kompozitsionnye materialy. Spravochnik [Composite materials. Reference book]. Moscow, Mashinostroenie Publ., 1990, 272 p.
[9] Dudchenko A.A. Prochnost i proektirovanie elementov aviatsionnykh konstruktsiy iz PKM [Strength and design of elements of aircraft structures from PCM]. Moscow, MAI Publ., 2007, 200 p.
[10] Greediac M., Fournier N., Paris P.-A., Surrel Y. Direct measurement of invariant mechanical parameters of composite plates. Journal of Composite Materials, 1999, no. 33 (21), pp. 2017–2036.
[11] Daniel L.M., Ishai O. Engineering Mechanics of Composite Materials. 2nd ed. Oxford University Press, New York, Oxford, 2006, 463 p. Available at: https://abru.ac.ir/files/teachers/doc-1569398578.pdf. (accessed April 10, 2023).
[12] Gdoutos E.E., Daniel I.M., Wang K.A. Multiaxial characterization and modeling of a PVC cellular foam. Journal of Thermoplastic Composite Materials, 2001, vol. 14, pp. 365–373.
[13] Abrate S. Criteria for yielding or failure of cellular materials. Journal of Sandwich Structures and Materials, 2008, vol. 10, pp. 5–51.
[14] Kravtsov V.A. Konechno-elementnye modeli sloistogo kompozitsionnogo materiala [The finite element models of slide composite material]. Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 39–42. Available at: https:/vestnikmai.ru/download/php?=12494.pdf (accessed April 10, 2023).
[15] Grishchenko S.V., Popov Yu.I. Razrabotka makromodeli sloistogo kompozita dlya analiza napryazhenno-deformirovannogo sostoyaniya neregulyarnykh zon tipovykh konstruktsiy planera samoleta [The development of a composite laminate macromodel for the analysis of stress-strain behavior in irregular zones of typical airframe]. Trudy MAI, 2013, no. 65, pp. 1–15. Available at: https://mai.ru/upload/iblock/168/1685505fa649aec9868e56c34cbf9e13.pdf (accessed April 10, 2023).