Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Experimental and mathematical simulation of movers for the prospective planetary rovers

Published: 14.05.2024

Authors: Ermakov V.Yu., Levashkin-Leonov S.V., Tufan A.

Published in issue: #5(149)/2024

DOI: 10.18698/2308-6033-2024-5-2357

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The paper considers a possibility of using the frequency, radial and radial-frequency type movers in promising designs of the domestic planetary rovers. Their effectiveness is assessed for various configurations: wheels with a single frame; wheels with two frames; wheels with mixed frames; suspension with one trajectory frame; legs with one frame. Mathematical model of the mover center of mass motion with the elliptically elongated and elliptically compressed trajectories is developed. The mover mathematical simulation was experimentally carried out using special software and algorithms; their structures behavior was analyzed under various physical conditions.

EDN ONOURN


References
[1] Kemurdzhian A.L., Gromov V.V., Kazhukalo I.F. et al. Planetokhody [Planetary rovers]. Moscow, Mashinostroenie Publ., 1993, 400 p.
[2] Ustyantsev L.S. Tsentrobezhno-silovoy dvizhitel [Centrifugal actuating mover]. Patent no. 2095625 C1 Russian Federation, 1997, 4 p.
[3] Porseva S.V., Zelentsov V.V., Shcheglov G.A. Issledovanie vozmozhnosti sozdaniya mobilnogo robota dlya izucheniya poverkhnosti Venery [Feasibility study of mobile robot for the Venus surface exploration]. In: XLVI Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S.P. Koroleva i drugikh vydayushchikhsya otechestvennykh uchenykh — pionerov osvoeniya kosmicheskogo prostranstva: Sb. tez. [XLVI Academic readings on cosmonautics dedicated to the memory of Academician S.P. Korolev and other outstanding domestic scientists — pioneers of space exploration: Coll. abstr.]. In 4 volumes. Moscow, BMSTU Publ., 2022, vol. 3, pp. 320–322.
[4] Tolchin V.N. Inertsioid. Sily inertsii kak istochnik postupatelnogo dvizheniya [Inertsioid. Inertia forces as a source of translational motion]. Perm, Book Publ., 1977, 99 p.
[5] Shipov G.I., Sidorov A.N. Teoreticheskie i eksperimentalnye issledovaniya reaktivnogo dvizheniya bez otbrasyvaniya massy [Theoretical and experimental studies of jet propulsion without mass rejection]. Akademiya Trinitarizma, El. no. 77-6567. Moscow, 2003, publ. 10724, 29 p.
[6] Shipov G.I. 4D giroskop v mekhanike Dekarta [4D gyroscope in the Descartes mechanics]. Akademiya Trinitarizma, El. no. 77-6567. Moscow, 2006, publ. 13938, 70 p.
[7] Savelkaev S.V. Effekt nezavisimosti velichiny smeshcheniya tsentra mass mekhanicheskoy sistemy ot dissipativnosti vneshney sredy (Effekt Savelkaeva) [Effect on independence for the quantity on displacement of the center of mass of a mechanical system from environmental dissipativity (Savelkaev effect)]. Mekhanika mashin, mekhanizmov i materialov — Mechanics of Machines, Mechanisms and Materials, 2011, no. 4 (17), pp. 42–48.
[8] Gayduk A.R., Zhebrun E.A. Modelirovanie dvizheniy inertsioida [Simulation of inertioids motions]. Izvestiya YuFU. Tekhnicheskie nauki — Izvestiya SFedU. Engineering Sciences, 2009, no. 5 (94), pp. 246–250.
[9] Pronota V.P. Uglubit poznanie mira [Deepen the knowledge of the world]. Internetnauka: nauchnyi zhurnal (Scientific journal), 2016, no. 8, pp. 1–10.
[10] Seydakhanov I.U., Seydakhanov S.U. Ustroystvo, sozdayuschee Koriolisa i tsentrobezhnye sily v odnom napravlenii, prevyshayushchie ikh v protivopolozhnom napravlenii, dlya sozdaniya dvigateley transportnykh sredstv [A device that creates Coriolis and centrifugal forces in one direction, exceeding them in the opposite direction, to create the transportation engines]. Patent no. EA200301181 A1, 2005.
[11] Khoroshavin A.V., Buyakov S.N., Mikhaylenko A.V. O kompensatsii asimmetrii impulsa tsentrobezhnykh sil v inertsioidakh impulsom sil Koriolisa [Compensation of asymmetry of the momentum of centrifugal forces in inertioids by the momentum of Coriolis forces]. In: Rezultaty sovremennykh nauchnykh issledovaniy i razrabotok. Sb st. XVIII Vserossiyskoy nauchno-prakticheskoy konferentsii [Results of modern scientific research and development. Coll. art. of the XVIII All-Russian Scientific and Practical Conference]. Penza, 2022, MTsNS “Nauka i Prosveshchenie” Publ., pp. 28–34. ISBN 978-5-00173-510-6.
[12] Vlasov V.N. Modelirovanie inertsoida Tolchina [Modeling the Tolchin inertioid]. Akademiya Trinitarizma, El. no. 77-6567. Moscow, 2019, publ. 25232, March 4.
[13] Bavrin G.I. Tsentrobezhnyi inertsionnyi dvizhitel [Centrifugal inertial mover]. Patent no. 2263819 C2 Russian Federation, 2005, bull. no. 31, 7 p.
[14] Rudenko T.V., Holostova O.V. Issledovanie dvizheniy golonomnykh mekhanicheskikh sistem [Study of motions of the holonomic mechanical systems]. Moscow, MAI Publ., 2005, 96 p.
[15] Savelkaev S.V. Vliyanie sil inertsii vzaimodeystvuyushchikh tel mekhanicheskoy sistemy na ee dvizhenie v dissipativnoy srede i osobennosti dvizheniya [Influence of inertia forces of interacting bodies of mechanical system on its motion in a dissipative medium and features of motion]. Vestnik SGUGiT — Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT), 2022, vol. 27, no. 5, pp. 185–202.
[16] Ilaletdinov L.F., Vetchanin E.V. Raschet parametrov dvizheniya inertsioidnogo robota v vyazkoy zhidkosti dlya postroeniya modeli upravleniya [Computation parameters of inertia robots body motion through viscous fluid for control model development]. Intellektualnye sistemy v proizvodstve — Intellectual Systems in Manufacturing, 2014, no. 1 (23), pp. 13–16.
[17] Cherepanov A.A. Inertsionnyi dvizhitel dlya transportnogo sredstva [Inertia mover for a transport vehicle]. Patent no. 2066398 С1 Russian Federation, 1996, 10 p.