Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Shock-wave structures control methods in the input section of the aircraft high-speed air intake

Published: 21.02.2023

Authors: Laptinskaya M.M., Savelova K.E., Chernyshov M.V.

Published in issue: #2(134)/2023

DOI: 10.18698/2308-6033-2023-2-2249

Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts

The paper considers features of regulating shock-wave structures using the gas blowing into the flow region from perforated boundaries, as well as by means of energy supply to the compression shocks. Scientists both in our country and abroad are actively studying the porous structures. Calculations in the gas dynamics software packages and using the MATLAB are making it possible to determine the flow blowing effect on rearrangement of the emerging shock-wave structures, which analysis with mathematical apparatus of the shock (detonation) polars allows evaluating their diversity with the pulsed energy supply to the compression shocks. Methods of these structures regulation under study contribute to improving characteristics of the supersonic aircraft and creation of their modernized designs taking into account transformation criteria of the shock-wave structures, which in many cases could be unstable.

[1] Alekseeva M.M., Brykov N.A., Chernyshov M.V. Study of gas flows about the air inlet of high-speed flying vehicles. AIP Conference Proceedings, 2021, vol. 2318, 7 p. DOI: 10.1063/5.0035787
[2] Alekseeva, M.M., Kaun, Y.V., Chernyshov, M.V., Yatsenko, A.A. Influence of surface permeability on gas-dynamic characteristics of high-speed flight. Journal of Physics: Conference Series, 2021, vol. 1959 (1), art. 012001. DOI: 10.1063/5.0035787
[3] Uskov V.N., Chernyshov M.V. Ekstremalnye udarno-volnovye sistemy v zadachyakh vneshney aerodinamiki [Extreme shock-wave systems in problems of external aerodynamics]. Teplofizika i aeromekhanika —Thermophysics and Aeromechanics, 2014, vol. 21, no. 1, pp. 15–31.
[4] Maslov A.A., Mironov S.G., Poplavskaya T.V., Kirilovskiy S.V., Tsyryulnikov I.S. Effect of porous inserts on aerodynamics of flying vehicles. Journal of Physics: Conference Series, 2019, vol. 1382, 7 p. DOI: 10.1088/1742-6596/1382/1/012023
[5] Tsyryulnikov I.S., Maslov A.A., Mironov S.G., Poplavskaya T.V., Kirilovskiy S.V. The efficiency of the method of sound absorbing coatings in vibrationally excited hypersonic flow. Technical Physics Letters, 2015, vol. 41, no. 2, pp. 184–186. DOI: 10.1134/S1063785015020273
[6] Mironov S.G., Kirilovskiy S.V., Poplavskaya T.V., Tsyryulnikov I.S., Maslov A.A. Physical and mathematical modeling of a supersonic flow around bodies with gas-permeable porous inserts at an angle of attack. Journal of Applied Mechanics and Technical Physics, 2020, vol. 61 (5), pp. 693–699. DOI: 10.1134/S0021894420050028
[7] GOST 4401–81 Atmosfera standartnaya. Parametry [Standard atmosphere. Parameters]. Moscow, Standards Publishing House, 1982, 180 p.
[8] Kaun Yu.V., Teterina I.V., Chernyshov M.V. Inzhektsiya gaza v zakriticheskuyu oblast sopla kak metod upravleniya poletom raket-nositeley sverkhlegkogo klassa [Gas injection into the supercritical region of the nozzle as a method of controlling the flight of ultra-light launch vehicles]. In: Aktualnye problemy zaschity i bezopasnosti. Trudy XXIII Vserossiyskoy nauchno-tekhnicheskoy konferentsii RARAN [Actual problems of protection and security. Proceedings of the XXIII All-Russian Scientific and Practical Conference of the RARAN]. Moscow, 2020, pp. 161–166.
[9] Ivanov M.S., Kudryavtsev A.N., Trotsyuk A.V., Fomin V.M. Sposob organizatsii detonatsionnogo rezhima goreniya v kamere sgoraniya sverkhzvukovogo pryamotochnogo vozdushno-reaktivnogo dvigatelya [The method of organizing the detonation mode of combustion in the combustion chamber of a supersonic ramjet engine]. Pat. no. RU 2285143 C2. Russian Federation, 2015, Bul. no. 26, 10 p.
[10] Chernyshov M.V., Murzina K.E., Matveev S.A., Yakovlev V.V. Shock-wave structures of prospective combined ramjet engine. IOP Conf. Series: Materials Science and Engineering, 2019, vol. 618, art. ID 012068. DOI: 10.1088/1757-899X/618/1/012068
[11] Savelova K.E., Alekseeva M.M., Matveev S.A., Chernyshov M.V. Shock-wave structure of prospective combined jet engine. Journal of Physics: Conference Series, 2021, vol. 1959, art. ID 012043. DOI: 10.1088/1742-6596/1959/1/012043
[12] Adrianov A.L., Starykh A.L., Uskov V.N. Interferentsiya statsionarnykh gazodinamicheskikh razryvov [Interference of stationary gas-dynamic discontinuities]. Novosibirsk, Nauka Publ., 1995, 180 p.
[13] Chernyshov M.V., Savelova K.E., Kapralova A.S. Approximate analytical models of shock-wave structure at steady Mach reflection. Fluids, 2021, no. 6 (9), paper 305. DOI: 10.3390/fluids6090305
[14] Hornung H.G., Oertel H., Sandeman R.J. Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation. Journal of Fluid Mechanics, 1979, vol. 90, pp. 541–560. DOI: 10.1017/S002211207900238X
[15] Denisov Yu.N. Gazodinamika detonatsionnykh struktur [Gas dynamics of detonation structures]. Moscow, Mashinostroenie Publ., 1989, 176 p.
[16] Li H., Ben-Dor G., Grönig H. Analytical Study of the Oblique Reflection of Detonation Waves. AIAA Journal, 1997, vol. 35, iss. 11, pp. 1712–1720. DOI: 10.2514/2.40
[17] Medvedev A.E. Reflection of an oblique shock wave in a reacting gas with a finite relaxation-zone length. Journal of Applied Mechanics and Technical Physics, 2001, vol. 42, iss. 2, pp. 211–218. DOI: 10.1023/A:1018811516116
[18] Li J., Ning J., Le J.H.S. Mach reflection of ZDN detonation wave. Shock Waves, 2015, vol. 25, iss. 3, pp. 293–304. DOI: 10.1007/s00193-015-0562-7
[19] Jing T., Ren H., Li J. Onset of the Mach reflection of Zel’dovich — von Neumann — Döring detonations. Entropy, 2021, vol. 23, iss. 3, paper 314, pp. 1–20. DOI: 10.3390/e23030314