Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Application of real gas models to the problem of high-speed flow around a body

Published: 17.11.2022

Authors: Ovchinnikova O.K., Fedosenko N.B.

Published in issue: #11(131)/2022

DOI: 10.18698/2308-6033-2022-11-2226

Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts

The paper presents results of computational simulation of the high-speed airflow around an axisymmetric body using various models that include ideal gas described by the Mendeleev—Clapeyron equation, real gas described by the Redlich—Kwong equation and user model approximating the empirical data. The user model is characterized by its own program code for the two-parameter approximation of the air thermophysical properties and taking into account in this context changes accompanying dissociation phenomena occurring at high temperatures without simulating physical and chemical transformations in the multicomponent gas mixture. The purpose of this study is to evaluate differences in the gas-dynamic flow pattern, shock-wave structure and thermal loading of the streamlined body depending on selection of the medium model. The results obtained make it possible to conclude on the need to introduce the real gas user models to reduce the error of computational simulation and ensure correct estimation of the heat flows.

[1] Aronov D.I., Klyagin V.A. Perspektivnye metody organizatsii teplovoy zaschity giperzvukovykh letatelnykh apparatov [Advanced methods for organizing thermal protection of hypersonic aircrafts]. Vestnik Kontserna VKO “Almaz – Antey” — Journal of “Almaz – Antey” Air and Space Defence Corporation, 2021, no. 1, pp. 52–66.
[2] Balmina R.V., Gubanov A.A., Ivankin M.A., Lapinsky D.A. Sostoyanie i perspektivy razrabotki giperzvukovogo vooruzheniya [Status and prospects for development of the hypersonic weapons]. Tehnicheskaya informaciya TsAGI, 2012, no. 1–2, 72 p.
[3] Reid R., Prausnitz J., Sherwood T. The properties of gases and liquids. Third edition. New York, McGraw-Hill Book Company, 1977 [In Russ.: Reid R., Prausnitz J., Sherwood T. Svoystva gazov i zhidkostey: Spravochnoe posobie. 3rd ed., rev. and enl. Leningrad, Khimiya Publ., 1982, 592 p.].
[4] Kraiko A.N., Makarov V.E. Yavnye analiticheskie formuly, opredelyayuschie ravnovesnyi sostav i termodinamicheskie funktsii vozdukha dlya temperatur ot 200 do 20000 K [Explicit analytic formulae defining the equilibrium composition and thermodynamic functions of air for temperatures from 200 to 20000 K]. Teplofizika vysokikh temperatur — High Temperature, 1996, vol. 34, iss. 2, pp. 208–219.
[5] Vargaftik N.B. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey [Handbook on thermophysical properties of gases and liquids.]. 2nd ed., enl. and rev. Moscow, Nauka Publ., 1972, 721 p.
[6] GOST 4401–81. Atmosfera standartnaya. Parametry [Standard atmosphere. Parameters]. Moscow, Standards Publ., 1982.
[7] Belov I.A., Isaev S.A. Modelirovanie turbulentnykh techeniy [Modeling of turbulent flows]. St. Petersburg, Balt. State. Tech. Univ., 2001, 108 p.
[8] Vlasov V.I., Gorshkov A.B., Kovalev R.V. Modeling of high temperature flows of multispecies gases and surface heat transfer to space vehicles. Physical-Chemical Kinetics in Gas Dynamics, 2008, vol. 7. Available at:
[9] Volkov K.N., Emelyanov V.N., Karpenko A.G. Numerical simulation of gas dynamic and physical-chemical processes in hypersonic flows past bodies. Numerical Methods and Programming, 2017, vol. 18, no. 4, pp. 387–405.
[10] Schouler M., Prevereaud Y., Mieussens L. Survey of flight and numerical data of hypersonic rarefied flows encountered in Earth orbit and atmospheric reentry. Progress in Aerospace Sciences, 2020, vol. 118, paper ID 100638.