Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Aerodynamic design methodology for parachute clusters

Published: 03.10.2024

Authors: Ploskov S.Yu.

Published in issue: #10(154)/2024

DOI: 10.18698/2308-6033-2024-10-2395

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The paper formulates a scientific problem and presents a methodology of parachute clusters aerodynamic design. It analyzes experimental studies of the parachute clusters in the wind tunnels carried out in Russia and abroad. Based on the joint implementation of the reliability computation and continuum mechanics methods, methodology of the parachute bundle aerodynamic design is synthesized. The paper briefly describes selection of the numerical computation methods and techniques in simulating the parachute formation, as well as aerodynamics of the separated flows. A specialized set of computer programs is developed. Comparing results of the numerical computation and the experimental data, the proposed methodology is tested. The paper for the first time identifies reasons for an increase in the parachute stability in a bundle and explains a decrease in the system total drag compared to a single parachute.

EDN FUCLRU


References
[1] Knacke T.W. Parachute Recovery Systems Design Manual. Santa Barbara, Para Publishing, 1992, 512 p.
[2] Lobanov N.A. Osnovy rascheta i konstruirovaniya parashyutov [Fundamentals of calculation and design of the parachutes]. Moscow, Mashinostroenie, 1965, 364 p.
[3] Ivanov P.I. Razrabotka metodov letnykh ispytaniy i issledovaniy parashyutnykh sistem i paraplanernykh letatelnykh apparatov. Dis. … d-ra tekhn. nauk [Development of methods for flight-testing and research of the parachute systems and paragliding aerial vehicles. Diss. … Dr. Sc. (Eng.)]. Feodosia, GP NII AUS Publ. Available at: https://paruplaner.ucoz.ru/publ/2_letnye_ispytanija_parashjutov/4_funkcionirovanie_ps/mnogokupolnye_parashjutnye_sistemy/98-1-0-79
[4] Ploskov S.Yu. Printsipy proektirovaniya i obespecheniya nadezhnosti parashyutnykh sistem pilotiruemykh kosmicheskikh apparatov [Principles of designing and ensuring reliability of parachute systems for foreign manned spacecraft]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2022, no. 3 (142), pp. 18–39.
[5] Gnedenko B.V., Belyaev Yu.K., Solovyev A.D. Matematicheskie metody v teorii nadezhnosti [Mathematical methods in the reliability theory]. Moscow, Nauka Publ., 1965, 524 p.
[6] Bolotin V.V. Statisticheskie metody v stroitelnoy mekhanike [Statistical methods in structural mechanics]. Moscow, Stroyizdat Publ., 1965, 279 p.
[7] Barlow R., Proschan F. Mathematical Theory of Reliability, John Wiley & Sons, NY, 1965 [In Russ.: Barlou R., Proshan F. Matematicheskaya teoriya nadezhnosti. Moscow, Sovetskoe Radio Publ., 1969, 488 p.].
[8] Ploskov S.Yu. Sovremennyi podkhod k proektirovaniya inostrannykh desantnykh parashyutnykh sistem [A modern approach to the design of foreign landing parachute systems]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2020, iss. 8 (104). https://doi.org/10.18698/2308-6033-2020-8-2008
[9] Brown W.D. Parachutes. London, England, I. Pitman & Sons, Ltd., 1951, 250 p.
[10] Heinrich N.S., Haak E.L. Stability and drag of parachutes with varying effective porosity. AFFDL-TR-71-58.
[11] Rakhmatulin H.A. Teoriya osesimmetrichnogo parashyuta [The theory of axisymmetric parachute]. Parashyuty i pronitsaemye tela [Parachutes and Permeable Bodies]. Moscow, Moscow University Publ., 1980, pp. 5–23.
[12] Lyalin V.V., Morozov V.I., Ponomarev A.T. Parashyutnye sistemy: problemy i metody ikh resheniya [Parachute systems: problems and methods for solving them]. Moscow, Fizmatlit Publ., 2009, 575 p.
[13] Zheng P.K. Otryvnye techeniya [Separated flows]. Moscow, Mir Publ., 1972–1973. Vols. 1–3.
[14] Gogish L.V., Stepanov G.Yu. Turbulentnye otryvnye techeniya [Turbulent separated flows]. Moscow, Nauka Publ., 1979, 368 p.
[15] Gogish L.V., Stepanov G.Yu. Otryvnye i kovitatsionnye techeniya [Separated and cavitational flows]. Moscow, Nauka Publ., 1990, 384 p.
[16] Sychev V.V., ed. Asimptoticheskaya teoriya otryvnykh techeniy [Asymptotic theory of separated flows]. Moscow, 1987, 260 p.
[17] Nosarev I.M. Aerodinamicheskie issledovaniya parashyutov pri razlichnykh uglakh ataki [Aerodynamic study of parachutes at different angles of attack]. Trudy TsAGI, 1976, iss. 1732, 40 p.
[18] Nosarev I.M. Eksperimentalnoe issledovanie aerodinamicheskikh kharakteristik trekhkupolnoy parashyutnoy sistemy [Experimental study of aerodynamic characteristics of the three-dome parachute system]. Parashyuty i pronitsaemye tela — Parachutes and Permeable Bodies. Moscow, Moscow University Publ., 1980, pp. 105–114.
[19] Braun J.F., Walcott W.B. Wind tunnel study of parachute clustering. ASD-TDR-63-159. https://doi.org/apps.dtic.mil/sti/tr/pdf/AD0402777.pdf
[20] Ploskov S.Yu. Zarubezhnye desantnye parashyutnye sistemy voennogo naznacheniya [Foreign landing parachute systems for military purposes]. Moscow, Knorus Publ., 2023, 482 p.
[21] Ivanov P.I., Berislavsky N.Yu. Problemnye voprosy funktsionirovaniya mnogokuplonykh parashyutnykh sistem [Problematic issues of functioning of multi-dome parachute systems]. Vestnik MAI — Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 43–52. https://doi.org/10.34759/vst-2020-l-43-52
[22] Knacke T.W. The Apollo Parachute Landing System. Northrop Ventura. TP-131, 1968, 29 p.
[23] Vyshinsky V.V., Sviridenko Yu.N. Novye tendentsii v metodakh aerodinamicheskogo proektirovaniya [New tendencies in the methods for aerodynamic design]. Nauchnyi vestnik MGTU GA. Seriya Aeromekhanika i prochnost — Civil Aviation High Technologies, 2006, no. 97, pp. 12–16.
[24] Belotserkovsky S.M., Lifanov I.K. Chislennye metody v singulyarnykh integralnykh uravneniyakh [Numerical methods in singular integral equations]. Moscow, Nauka Publ., 1985, 256 p.
[25] Katz J., Plotkin A. Low-Speed Aerodynamics: From wing Theory to Panel Methods. McGraw-Hill, Inc, 1991, 293 p.
[26] Heinrich H.G. The effects of porosity on design and performance characteristics of parachutes. 1949. WADC TR 54–49.
[27] Gorsky N.L. Chislennyi sposob rascheta dinamiki myagkoy obolochki, osnovannoy na diskretnoy modeli tela [Numerical method for calculating dynamics of a soft shell based on the discrete body model]. Dinamicheskie sistemy [Dynamic Systems]. Kyiv, Vischa Shkola Publ., 1987, issue 6, pp. 26–30.