One-parameter adaptation of an aircraft homing system
Authors: Klishin A.N., Kolesnikova D.S.
Published in issue: #6(126)/2022
DOI: 10.18698/2308-6033-2022-6-2187
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The ever-increasing requirements for aircraft control systems lead to their more complex structure and, consequently, synthesis. Thus, there is a need to develop and improve control algorithms that can meet these requirements. To develop control systems for high-precision aircraft, it is important to analyze how adaptive control systems are used. The paper examines the aircraft control system with one-parametric adaptation homing in the final section of the trajectory. The analysis of the test trajectory of the aircraft movement allowed us to establish the criteria for selecting the adaptation parameter. We comparatively analyzed the parameters, found a method to estimate their efficiency, and demonstrated the operation procedure of the adaptive system on a typical model of an aircraft moving in the atmosphere when homing in on a fixed target. The study gives the results of numerical simulation and shows the high efficiency of the method developed.
References
[1] Lysenko L.N. Navedenie ballisticheskikh raket [Guidance of ballistic missiles]. Moscow, BMSTU Publ., 2016, 445 p.
[2] Pupkov K.A., Faldin N.V., Egupov N.D. Metody sinteza optimalnykh sistem avtomaticheskogo upravleniya [Methods of synthesis of optimal automatic control systems]. Moscow, BMSTU Publ., 2000, 512 p.
[3] Andrievsky B.R. Teoreticheskie osnovy avtomatizirovannogo upravleniya [Theoretical foundations of automated control]. St. Petersburg, BSTU “VOENMEH” Publ., 2008, 230 p.
[4] Babkov N.A. Teoriya avtomaticheskogo upravleniya. Ch. I. Teoriya lineynykh sistem avtomaticheskogo upravleniya [Theory of automatic control. Part I. Theory of linear automatic control systems]. Moscow, Vysshaya Shkola Publ., 1986, 367 p.
[5] Rybalev A.N. Teoriya avtomaticheskogo upravleniya. Optimalnye sistemy. Teoreticheskie svedeniya s primerami resheniya zadach i zadaniya k prakticheskim i laboratornym rabotam [Theory of automatic control. Optimal systems. Theoretical information with examples of solving problems and tasks for practical and laboratory work]. Blagoveshchensk, AmSU Publ., 2006, 107 p.
[6] Abgaryan K.A. Matrichnoe ischislenie s prilozheniyami v teorii dinamicheskikh sistem [Matrix calculus with applications in the theory of dynamical systems]. Moscow, Fizmatlib Publ., 1994, 544 p.
[7] Klishin A.N. Upravlenie koeffitsientami usileniya sistemy stabilizatsii letatelnykh apparatov dlya kompensatsii ee nestatsionarnosti [Control of the gain coefficients of the aircraft stabilization system to compensate for its unsteadiness]. Tezisy dokladov XXVII Gagarinskikh chteniy [Abstracts of the XXVII Gagarin Readings]. Moscow, 2002, p. 106.
[8] Shvyrkina O.S., Klishin A.N. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 8. http://dx.doi.org/10.18698/2308-6033-2018-8-1791
[9] Klishin A.N., Shvyrkina O.S. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 9. http://dx.doi.org/10.18698/2308-6033-2016-09-1534
[10] Benevolsky S.V. Oboronnaya tekhnika (Defense technology), 2007, no. 3–4, pp. 12–16.
[11] Lebedev A.A., Karabanov V.A. Dinamika sistem upravleniya bespilotnymi letatelnymi apparatami [Dynamics of control systems for unmanned aerial vehicles]. Moscow, Mashinostroenie Publ., 1965, 528 p.
[12] Gorchenko L.D., Nuzhdin B.S. Ballisticheskoe modelirovanie dvizheniya raket s uchetom pogreshnostey geofizicheskikh faktorov [Ballistic modeling of rocket motion taking into account errors of geophysical factors]. Moscow, SRTMA Publ., 2001, 431 p.