Aspects of applying combined mass–time functional in solving the problem of optimizing the multiple-burn transfer of a spacecraft into a high-energy orbit
Authors: Kiriliuk E.V., Stepanov M.N.
Published in issue: #3(123)/2022
DOI: 10.18698/2308-6033-2022-3-2164
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
Through the example of a non-coplanar transfer of an orbital unit with a low reference to a geostationary orbit, the paper describes the main aspects of applying the combined mass–time functional to the problem of optimizing multiple-burn transfer using the maximum principle. The study analyzes the saturation of the dependence of the orbital unit’s mass in the target orbit on the weight coefficient for a wide range of the orbital unit’s mass-energy characteristics of upper stages for a given structure of the optimal trajectory. Furthermore, a similar analysis was carried out for structures of optimal trajectories containing a different number of perigee active sections, with fixed mass-energy characteristics of the upper stage. The ranges of variation of the weight coefficient are demonstrated, in which there are optimal schemes containing a different number of perigee active sites. Recommendations are given for setting the saturation coefficient, at which the solution of the problem with the combined functional can be considered coinciding with the solution of the problem of maximizing the finite mass of the orbital block.
References
[1] Krotov V.F.., Gurman V.I. Metodi i zadachi optimalnogo upravleniya [Methods and problems of optimal control]. Moscow, Nauka Publ., 1973, 448 p.
[2] Gurman V.I. Vyrozhdennie zadachi optimalnogo upravleniya [Degenerate optimal control problems]. Moscow, Nauka Publ., 1977, 304 p.
[3] Hsu J.C., Meyer A.U. Modern Control Principles and Applications, 1968, 769 p. [In Russ.: Hsu J.C., Meyer A.U. Sovremennaya teoriya avtomaticheskogo upravleniya i ejo primenenie. Moscow, Mashinostroenie Publ., 1972, 552 p.].
[4] Fedelbaum A.A. Osnovy teorii optimalnykh avtomaticheskih system [Fundamentals of the theory of optimal automatic systems]. Moscow, Fizmatgiz Publ., 1963, 552 p.
[5] Grigoriev K.G., Fedyna А.V. Izvestiya Rossiskoy akademii nauk. Tehnicheskaya kibernetika — Engineering Cybernatics, 1993, no. 4, pp. 116126.
[6] Grigoriev K.G. Kosmicheskie issledovaniya — Cosmic Research, 1994, vol. 32, no. 2, pp. 45–60.
[7] Grigoriev K.G. Kosmicheskie issledovaniya — Cosmic Research, 1994, vol. 32, no. 1, pp. 56–59.
[8] Pontryagin L.S., Boltyanskiy V.G., Gamkrelidze R.V., Mishechenko E.F., Matematicheskaya teoriya optimalnykh protsessov [The Mathematical theory of optimal processes]. Moscow, Fizmatgiz Publ., 1961, 393 p.
[9] Shalashin V.I., Kuznetsov E.B. Metod prodolzheniya resheniya po по parametru i nailuchshaya parametrizatsiya v prikladnoy matematike i mekhanike [Method of solution continuation with respect to a parameter and the best parametrization in applied mathematics and mechanics]. Moscow, Editorial URSS Publ., 1999, 244 p.
[10] Allgower E.L., Georg K. Introduction of Numerical Continuation Methods. Berlin, Heidelberg, Springer-Verlag, 1990, 388 p.
[11] Rheinboldt W.C. Numerical continuation methods: a perspective. Journal of Computational and Applied Mathematics, 2000, vol. 124, pp. 229–244. DOI: 10.1016/S0377-0427(00)00428-3
[12] Kuznetsov E.B. Nekotorye prilozheniya metoda prodolzheniya resheniya po nailuchshemu parametru [Some applications of the solution continuation method with respect to the best parameter]. Moscow, MAI Publ., 2013, 160 p.
[13] Katargin A.P., Stepanov M.N. Minimiziruyuschaya posledovatelnost traektorii pereleta kosmicheskogo apparata s nizkoy krugovoy orbity na statsionarnuyu orbitu iskusstvennogo sputnika Zemli [Minimizing the sequence of flight trajectories of a spacecraft from a low circular orbit to a stationary orbit of an artificial Earth satellite]. Trudy VI Vserossiyskikh nauchnykh chteniy po voennoy kosmonavtike, posvyashennykh pamyati M.K. Tikhonravova [Proceedings of the VI All-Russian scientific readings on military cosmonautics, dedicated to the memory of M.K. Tikhonravova. Collection of scientific papers]. Korolyov town, Moscow Region, 4th Central Scientific and Research Institute, Ministry of Defence of Russia, 2008, book 2, pp. 217–228.
[14] Kiriliuk E.V., Koryanov V.V., Stepanov M.N. Trudy Voenno-kosmicheskoy akademii im. A.F. Mozhayskogo (Proceedings of the Military Space Academy. A.F. Mozhaisky), 2017, no. 656, pp. 74–78.