End-to-end optimization of a payload transfers into the geostationary orbit using the combination of the upper stage energy capabilities and the spacecraft own propulsion system
Authors: Kiriliuk E.V.
Published in issue: #2(122)/2022
DOI: 10.18698/2308-6033-2022-2-2155
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The article considers an approach for carrying out end-to-end flight trajectory numerical optimization of the multi stage orbital unit based on the maximum principle. The results of the practical application of this approach are presented on the example of a non-coplanar flight of an orbital unit, including the Briz-M upper stage and a spacecraft designed on the basis of the SS/L 1300 satellite platform, from a low reference orbit to a geostationary one. Four families of the problem extremals were obtained, corresponding to the “direct” launch and launch with “throw” of the spacecraft beyond the height of the geostationary orbit (bi-elliptic trajectories) with two and three perigee burns of the upper stage propulsion unit. The effect of the total duration of a non-coplanar flight from a low reference orbit to a geostationary one on the optimal trajectory parameters including the characteristics of the orbit part interfacing the sections where the upper stage propulsion system burns and the spacecraft own propulsion system burns were researched.
References
[1] Sikharulidze Yu.G. Ballistika i navedenie letatelnyh apparatov [Aircraft ballistics and guidance]. Moscow, Binom Publ., 2011, 352 p.
[2] Okhotsimsky D.E., Eneev T.M. Uspekhi fizicheskikh nauk — Advances of Physical Sciences, 1957, vol. 63, no. 1a, pp. 5–32.
[3] Sänger-Bredt I. Voprosy raketnoj tehniki (Rocket technology issues), 1954, no. 5(23), pp. 3–26.
[4] Troitsky V.A. Kosmicheskie issledovaniya — Cosmic Research, 1967, vol. 5, no. 2, pp. 176–183.
[5] Kosmodemyansky V.A. Mekhanika tverdogo tela — Mechanics of Solids, 1987, no. 4, pp. 17–22.
[6] Velichenko V.V. Avtomatika i telemekhanika — Automation and Remote Control, 1966, no. 7, pp. 20–30.
[7] Moiseenko V.P. Trudy TsAGI (Tsagi Science Journal), no. 1295. Zhukovsky, 1971.
[8] Ashchepkov L.T. Optimalnoe upravlenie razryvnymi sistemami [Optimal control of discontinuous systems]. Novosibirsk, Nauka. Sib. Otdelenie Publ., 1987, 226 p.
[9] Grigoriev I.S., Danilina I.A. Avtomatika i telemekhanika — Automation and Remote Control, 2007, no. 8, pp. 86–105.
[10] Grigoriev I.S., Danilina I.A. Avtomatika i telemekhanika — Automation and Remote Control, 2017, no. 12, pp. 131–140.
[11] Grigoryev I.S., Danilina I.A. Avtomatika i telemekhanika — Automation and Remote Control, 2018, no. 2, pp. 135–153.
[12] Grigoryev K.G., Fedyna А.V. Tekhnicheskaya kibernetika — Technical cybernetics, 1993, no. 4, pp. 116–126.
[13] Grigoryev K.G. Kosmicheskie issledovaniya — Cosmic Research, 1994, vol. 32, no. 2, pp. 45–60.
[14] Pontryagin L.S, Boltyansky V.G., Gamkrelidze R.V., Mishchenko E.F., Matematicheskaya teoriya optimalnykh processov [The Mathematical Theory of Optimal Processes]. Moscow, Fizmatgiz Publ., 1961, 393 p.
[15] Kuznetsov E.B. Nekotorye prilozheniya metoda prodolzheniya resheniya po nailuchshemu parametru [Some Applications of the Best Parameter Continuation Method]. Moscow, MAI Publ., 2013, 160 p.
[16] Allgower E.L., Georg K. Introduction of Numerical Continuation Methods. Berlin, Heidelberg, Springer-Verlag Publ., 1990, 388 p.
[17] Novosti kosmonavtiki (News of cosmonautics), 2013, vol. 23, no. 12 (371), pp. 24–25.
[18] Maral G., Bousquet M. Satellite communications systems. Systems, Techniques and Technologies. UK, John Wiley & Sons Ltd. Publ., 2009, 743 pp.
[19] Kiriluk E.V., Koryanov V.V., Stepanov M.N. Trudy Voenno-kosmicheskoy akademii im. A.F. Mozhayskogo — Proceedings of the Mozhaisky Military Space Academy, 2017, no. 656, pp. 74–78.