Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Development of an algorithmic method for improving the landing safety of a damaged heavy transport aircraft

Published: 22.02.2022

Authors: Kostiukov V.M., Tran V.C., Nguyen N.M.

Published in issue: #2(122)/2022

DOI: 10.18698/2308-6033-2022-2-2151

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The use of modern computer technology in the development of new aircraft contributes to the improvement of their characteristics in terms of flight safety due to more advanced information processing algorithms that ensure the identification of dangerous (emergency) aircraft motion modes. The detected violations in the operation of the equipment make it possible to change the algorithm for generating control actions on board. In order to identify a failure, it is proposed to use a correlation algorithm, for the implementation of which an algorithm has been developed for generating databases according to the quantitative characteristics of the development of failures in the form of Z-transfer functions. The redesign of the control algorithm is carried out in the form of implementing the Euler—Lagrange optimality conditions, where the control function iteration method is used.


References
[1] Frink N.T., Pirzadeh S.Z., Atkins H.L., Viken S.A., Morrison J.H. CFD assessment of aerodynamic degradation of a subsonic transport due to airframe damage. AIAA, 2010, Paper 2010-0500. DOI: 10.2514/6.2010-500
[2] Kostyukov V.M., Tran K.D. Vestnik MAI — Aerospace MAI Journal, 2015, vol. 22, no. 1, pp. 14–20.
[3] Zaporozhets A.V., Kostiukov V.M. Proektirovanie system otobrazheniia informatsii [Design of information display systems]. Moscow, Mashinostroenie Publ., 1992, 336 p.
[4] Shah G.H. Aerodynamic effects and modeling of damage to transport aircraft. AIAA, 2008, Paper 2008-6203. DOI: 10.2514/6.2008-6203
[5] Zore K., Shoaib S., Stokes J., Sasanapuri B., Sharkey P. ANSYS CFD Study for High Lift Aircraft Configurations. Applied Aerodynamics Conference 2018, 2018, Paper 2844. DOI: 10.2514/6.2018-2844
[6] Isermann R. Digital control sуstems. Berlin, Heidelberg, Springer-Verlag, 1981 [In Russ.: Izerman R. Tsifrovye system upravleniya. Moscow, Mir Publ., 1984, 541 p.].
[7] Krasovskiy A.A., Beloglazov I.N., Chigin G.P. Teoriya korrelyatsionno-ekstremal’nykh system [Theory of correlation-extremal systems]. Moscow, Nauka Publ., 1979, 448 p.
[8] Nguyen M., Kostiukov V., Tran C. Effect of an in-flight vertical acceleration on landing accuracy after baro-inertial system failure. Aviation, 2020, vol. 24, no. 2, pp. 80–90. DOI: 10.3846/aviation.2020.12424
[9] Bryson A.E., jr., Ho Yu-Chi. Applied optimal control: optimization, estimation and control. Blaisdell Publishing Company, 1969 [In Russ.: Bryson A.E., Ho Yu-Chi. Prikladnaya teoriya optimal’nogo upravleniya. Moscow, Mir Publ., 1972, 544 p.].
[10] Alekcandrov A.D., Andreev V.P., Kein B.M., et al. Systemy tsifrovogo upravleniya samoletom [Aircraft digital control systems]. Moscow, Mashinostroenie Publ., 1983, 223 p.
[11] Merriam C.W. Optimization theory and the design of feedback control systems [In Russ.: Merriam C.W. Teoriya optimizatsiya i raschet system upravleniya s obratnoi svyaz’yu. Moscow, Mir Publ., 1967, 549 p.].