Optimization of aerospace aircraft guidance to the landing area
Authors: Melnikov A.Yu., Ilukhin S.N.
Published in issue: #9(117)/2021
DOI: 10.18698/2308-6033-2021-9-2113
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The article considers a technique for constructing an optimal guidance procedure for an aerospace aircraft. The technique is based on the adaptation of the Pontryagin maximum principle for the considered class of problems. At the same time the guidance accuracy is ensured by solving a boundary value problem, which is periodically performed during the flight. The developed procedure for predicting the final parameters of the optimal flight according to a simplified motion model is presented, which also makes it possible to determine the value of the actual miss. A detailed mathematical description of the proposed technique is given. The feasibility of the proposed technique is ensured by minimizing the amount of computational operations. The guidance algorithm efficiency is illustrated by a numerical example with a flight simulation procedure taking into account all significant factors. The paper also provides examples of solving boundary value problems and the results of modeling the optimal guidance.
References
[1] Betanov V.V., Doronin D.V., Zakharov S.E. Kosmicheskie issledovaniya — Cosmic Research, 1999, no. 4, pp. 365–373.
[2] Xu B., Shi Z. Science China Information Sciences, 2015, vol. 58, no. 7, pp. 1–19. DOI: 10.1007/s11432-014-5273-7
[3] Koryanov V.V., Kazakovtsev V.P. Estestvennye i tekhnicheskie nauki — Natural and Technical Sciences, 2014, no. 9–10, pp. 179–184.
[4] Lazarev Yu.N. Upravlenie traektoriyami aerokosmicheskikh apparatov [Control of aerospace vehicle trajectories]. Samara, Samarskiy Scientific Center of RAS Publ., 2007, 274 p.
[5] Wang Y.-S., Chien C.-S. Journal of Computational Physics, 2014, vol. 256, pp. 198–213. DOI: 10.1016/j.jcp.2013.08.056
[6] Sikharulidze Yu.G. Ballistika i navedenie letatelnykh apparatov [Aircraft ballistics and guidance]. Moscow, BINOM Publ., 2015, 410 p.
[7] Buzuluk V.I., Mikhalev S.M. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 6 (90). DOI: 10.18698/2308-6033-2019-6-1894
[8] Khramov A.A. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie — VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2019, vol. 18, no. 1, pp. 140–153. DOI: 10.18287/2541-7533-2019-18-1-140-153
[9] Melnikov A.Yu. Aerokosmicheskiy nauchnyy zhurnal — Aerospace Scientific Journal, 2015, no. 05, pp. 26–37. DOI: 10.7463/aersp.0515.0821077
[10] Melnikov A.Yu. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2021, iss. 2 (110). DOI: 10.18698/2308-6033-2021-2-2058
[11] Pontryagin L.S., Boltyansky V.G., Gamkrelidze R.V., Mishchenko E.V. Matematicheskaya teoriya optimalnykh protsessov [Mathematical theory of optimal processes]. Moscow, Fizmatgiz Publ., 1976, 322 p.
[12] Lysenko L.N., Sham N.Ch. Nauchnyy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii — Scientific Herald of the Moscow State Technical University of Civil Aviation, 2014, no. 200 (2), pp. 118–125.
[13] Klishin A.N., Shvyrkina O.S. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 9 (57). DOI: 18698/2308-10.6033-2016-9-1534