Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Optimization of the spacecraft final orbit and the trajectory of the apsidal impulse launch, with due regard to spent stage jettisons into the atmosphere

Published: 26.04.2019

Authors: Grigoriev I.S., Proskuryakov A.I

Published in issue: #4(88)/2019

DOI: 10.18698/2308-6033-2019-4-1869

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The article considers the idea of reducing littering the near-Earth space by means of spent stage jettisons into the Earth's atmosphere. A solution to the problem of optimization of the apsidal impulse transfer between the reference circular orbit of an Earth’s artificial satellite and the final elliptical orbit is proposed. A parametric analysis of the obtained solutions is performed, a simple pulse choice scheme close in functionality to the optimal one is proposed. Questions about the optimal number and location of pulses and the optimal mass of the first stage are investigated. An assessment of the additional mass consumption associated with the stage jettisons into the atmosphere comparing with the simple separation of the stages is performed. It was found that in the case of optimal fuel distribution among the tanks such mass consumption is small when a final ascent pulse is 1.5 km/s.


References
[1] Raikunov G.G., ed. Kosmicheskiy musor. Kn. 2. Preduprezhdenie obrazovaniya kosmicheskoqo musora [Space debris. Book 2. Space debris prevention]. Moscow, Fizmatlit Publ., 2014, 188 p.
[2] Starke J., Bischof B., Foth W., Gunther J. ROGER a potential orbital space debris removal system. Available at: http://adsabs.harvard.edu/abs/2010cosp...38.3935S (accessed December 18, 2018).
[3] Guang Zhai, Yue Qiu, Bin Liang, Cheng Li. On-orbit capture with flexible tether-net system. Acta Astronautica, 2009, no. 69, pp. 613–623.
[4] Savelyev B.I. Mnogorazovyy kosmicheskiy apparat-buksir dlya uborki kosmicheskogo musora [Reusable tug spacecraft for cleaning space debris]. Patent RF, no. 2510359, 2014, Bull. 9, 8 p.
[5] Dudziak R., Tuttle S., Barraclough S. Harpoon technology development for the active removal of space debris. Advances in Space Research, 2015, vol. 56 (3), pp. 509–527.
[6] Avdeev A.V., Bashkin A.S., Katorgin B.I., Parfenyev M.V. Kvantovaya elektronika — Quantum Electronics, 2011, vol. 41, no. 7, pp. 669–674.
[7] Apollonov V.V. Kvantovaya elektronika — Quantum Electronics, 2013, vol. 43, no. 9, pp. 890–894.
[8] Phipps C.R., Baker K.L., Libby S.B., Liedahl D.A., Olivier S.S., Pleasance L.D., Rubenchik A., et al. Removing orbital debris with lasers. Advances in Space Research, 2012, vol. 49 (9), pp. 1283–1300.
[9] Baranov A.A., Grishko D.A., Razoumny Y.N., Li Jun. Flyby of large-size space debris objects and their transition to the disposal orbits in LEO. Advances in Space Research, 2017, vol. 59 (12), рp. 3011–3022.
[10] Inter-Agency Space Debris Coordination Committee space debris mitigation guidelines. 2003. Available at: URL: http://http://www.unoosa.org/pdf/limited/c1/AC105_C1_L260R.pdf (accessed October 10, 2018).
[11] Golikov A.R., Baranov A.R., Budyansky A.A., Chernov N.V. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroyeniye — Herald of the Bauman Moscow State Technical University. Series: Mechanical Engineering, 2015, no. 4, pp. 4–19.
[12] Afanasyeva, T.I., Gridchina, T.A., Kolyuka, Yu.F. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2014, no. 1, pp. 94–105.
[13] Duboshin G.N. Spravochnoe rukovodstvo po nebesnoy mekhanire i astrodinamike [Reference Guide on Celestial Mechanics and Astrodynamics]. Moscow, Nauka Publ., 1976, 864 p.
[14] Grigoryev I.S., Proskuryakov A.I. Uproschennaya optimizatsiya vyvedeniya kosmicheskogo apparata s vozvrascheniem razgonnogo bloka v atmosferu Zemli [Simplified optimization of the spacecraft launch with booster reentry into the Earth atmosphere]. Idei K.E. Tsiolkovskogo v innovatsiyakh nauki i tekhniki. Materialy 51-kh Nauchnykh chteniy pamyati K.E. Tsiolkovskogo [Proceedings of the 51st Scientific Readings in Memory of K.E. Tsiolkovsky. K.E. Tsiolkovsky’s ideas in the innovations of science and technology]. Kaluga, Eidos Publ., 2016, pp. 142–143.
[15] Grigoryev I.S., Proskuryakov A.I. Optimizatsiya pereleta kosmicheskogo apparata na tselevuyu ellipticheskuyu orbitu so sbrosom stupeney v atmosferu Zemli [Optimization of the spacecraft transfer to the final elliptic orbit with discarding rocket stages into the Earth atmosphere]. K.E. Tsiolkovsky. Problemy i buduschee rossiyskoy nauki i tekhniki. Materialy 52-kh Nauchnykh chteniy pamyati K.E. Tsiolkovskogo [Proceedings of the 52nd Scientific Readings in Memory of K.E. Tsiolkovsky. K.E. Tsiolkovsky. Problems and future of Russian science and technology]. Kaluga, Eidos Publ., 2017, p. 181.
[16] Grigoryev I.S., Proskuryakov A.I. Optimizatsiya tselevoy orbity i analiz apsidalnykh impulsnykh traektoriy v zadache pereleta kosmicheskogo apparata na tselevuyu orbitu so sbrosom otrabotavshikh stupeney v atmosferu Zemli [Optimization of the final orbit and analysis of apsidal pulse trajectories in the problem of spacecraft transfer to the final orbit with spent stage jettisons into the Earth atmosphere]. Idei K.E. Tsiolkovskogo v kontekste sovremennogo razvitiya nauki i tekhniki. Materialy 53-kh Nauchnykh chteniy pamyati K.E. Tsiolkovskogo [Proceedings of the 53rd Scientific Readings in Memory of K.E. Tsiolkovsky. K.E. Tsiolkovsky
[17] Samarsky A.A., Mikhailov A.P. Matematicheskoe modelirovaniye. Idei. Metody. Primery [Mathematical modeling. Ideas. Methods. Examples]. Moscow, Nauka Publ., 1997, 320 p.
[18] Galeev E.M. Optimizatsiya. Teoriya. Primery. Zadachi [Optimization. Theory. Examples. Problems]. Moscow, LENAND Publ., 2018, 335 p.
[19] Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimalnoe upravlenie [Optimal control]. Moscow, Nauka Publ., 2005, 384 p.