Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Employing functional lead to improve homing system efficiency

Published: 11.10.2018

Authors: Kalinovskiy T.A., Klishin A.N., Ilukhin S.N.

Published in issue: #10(82)/2018

DOI: 10.18698/2308-6033-2018-10-1812

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The paper considers employing two radar seeker types for aircraft guidance. The first one is a seeker equipped with a target tracker featuring synchronous servo drives operating in two perpendicular planes. The second one is a seeker equipped with a zoom lens, which gauges bearing angle components in order to home the aircraft. We compared and analysed simulation results for the case of aircraft equipped with the seekers described above. We show that the zoom lens seeker displays lower guidance quality than a gimbal-mounted seeker; however, this seeker is more efficient economically. In order to expand the hit region when using the zoom lens seeker, we suggest using functional lead, which makes it possible to not only enlarge the hit region but also match the region generated by gimbal-mounted seekers. We demonstrate how to determine functional lead parameters. We present several principles of designing functional lead algorithms and our numerical computation results


References
[1] Lysenko L.N. Navedenie ballisticheskikh raket [Ballistic missile guidance]. Moscow, BMSTU Publ., 2016.
[2] Krasilshchikov M.N., Sebryakov G.G., eds. Upravlenie i navedenie bespilotnykh manevrennykh letatelnykh apparatov na osnove sovremennykh informatsionnykh tekhnologiy [Guidance and homing for highly manoeuvrable unmanned aerial vehicles based on modern information technology]. Moscow, FIZMATLIT Publ., 2003, 280 p.
[3] Urskiy B.G., Lyushchanov M.A., Spirin E.P., Solunin V.L. Osnovy teorii sistem upravleniya vysokotochnykh raketnykh kompleksov sukhoputnykh voysk [Foundations of guidance system theory for precision missile systems of ground forces]. Moscow, BMSTU Publ., 2001.
[4] Klishin A.N., Shvyrkina O.S. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation. 2016, iss. 9. DOI: 10.18698/2308-6033-2016-09-1534
[5] Benevolskiy S.V., Goncharenko V.I. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie — VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2011, no. 2, p. 18.
[6] Grabin V.V., Krylov I.V. Optimalnoe i kvazioptimalnoe navedenie letatelnogo apparata na dvizhushchuyusya tsel [Optimum and quasi-optimum aircraft homing in on a moving target]. Moscow, BMSTU Publ., 1999, 20 p.
[7] Zubov N.E., Ryabchenko V.N., Poklad M.N., Efanov D.E., Starovoytov E.I. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 5. DOI: 10.18698/2308-6033-2017-5-1617
[8] Grumondz V.T., Polishchuk M.A. “Vestnik Moskovskogo Aviatsionnogo Instituta” Journal (Bulletin of Moscow Aviation Institute), 2014, no. 4 (vol. 21), pp. 7–12.
[9] Siouris G.M. Missile Guidance and Control Systems. New York, Springer-Verlag, 2004, vol. 681.
[10] Kostyukov V.V., Solunin V.L., Shapovalov A.B. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk — Proceedings of the Russian Academy of Missile and Artillery Sciences, 2017, no. 1 (96), pp. 90–96.
[11] Mubarakshin R.V. Osnovy proektirovaniya informatsionno-upravlyaemykh sistem letatelnykh apparatov [Foundations of aircraft command information system design]. Moscow, Moscow Aviation Institute Publ., 1999.
[12] Grishin Yu.P., Ipatov V.P., Kazarinov Yu.M., Kolomenskiy Yu.A., Ulyanitskiy Yu.D. Radiotekhnicheskie sistemy [Radioengineering systems]. Moscow, Vysshaya Shkola Publ., 1990.
[13] Verba V.S. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Printsipy postroeniya, problemy razrabotki i osobennosti funktsionirovaniya [Aviation radar picket and guidance systems. Design principles, development issues and operation specifics]. Moscow, Radiotekhnika Publ., 2014, 528 p.
[14] Kirsanov A.P. Avtomatika i telemekhanika — Automation and Remote Control, 2014, no. 9, p. 144.
[15] Benevolskiy S.V. Oboronnaya tekhnika — Defence technology, 2007, no. 3–4, pp. 12–16.
[16] Grabin V.V., A.N. Oboronnaya tekhnika — Defence technology, 2003, no. 1–2, pp. 67–71.
[17] Benevolskiy S.V. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal POLET — All-Russian Scientific-Technical Journal “Polyot” (“Flight”), 2002, no. 6, p. 54.
[18] Tolpegin O.A., Lemeshonok T.Yu. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk — Proceedings of the Russian Academy of Missile and Artillery Sciences, 2016, no. 3 (93), p. 89.
[19] Klishin A.N. Issledovanie printsipialnoy vozmozhnosti sozdaniya algoritmov navedeniya letatelnykh apparatov na podvizhnye tseli metodom pryamogo samonavedeniya s funktsionalnym uprezhdeniem, dostatochno priblizhennym k metodu proportsionalnogo sblizheniya [Investigating a theoretical possibility of developing aircraft guidance algorithms for hitting moving targets by direct homing with functional lead, a method similar enough to proportional navigation]. Tezisy dokladov XXVI Gagarinskikh chteniy [Proc. of 26th Gagarin readings]. Moscow, 2000, p. 77.
[20] Klishin A.N. Sposob vosstanovleniya postoyannykh parametrov funktsionalnogo uprezhdeniya po kraevym znacheniyam na bortu letatelnogo apparata [Method for restoring constant parameters of functional lead from boundary values on board the aircraft]. Tezisy dokladov XXIX Gagarinskikh chteniy [Proc. of 29th Gagarin readings]. Moscow, 2003, p. 98.