Universal control laws of stabilizing longitudinal motion of different types of aircrafts
Authors: Zubov N.E., Ryabchenko V.N., Poklad M.N., Efanov D.E., Starovoytov E.I.
Published in issue: #5(65)/2017
DOI: 10.18698/2308-6033-2017-5-1617
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The paper presents the analytically synthesized law of lateral movement stabilization. It is done for the linearized model of the fourth order lateral movement of an isolated single-rotor helicopter, which can be regarded as a universal model for the aircraft lateral movement of any type and which represents the MIMO system containing two entrances. The decomposition method of MIMO system modal control, which was previously developed by the authors, is the basis of the decomposition synthesis. To check the correctness of the problem, we perform mathematical modeling of the single-rotor helicopter lateral movement using stabilization laws synthesized analytically. We present graphs of transient processes of the helicopter lateral movement as well as component changes of the vector control during the implementation process of the synthesized control laws.
References
[1] Zubov N.E., Mikrin E.A., Ryabchenko V.N., Proletarskii A.V. Aviatsionnaya tekhnika. Izvestiya vysshikh uchebnykh zavedeniy. - Izv. VUZ. Aviatsionnaya Tekhnika (Russian Aeronautics), 2015, vol. 58, no. 3, pp. 263-270.
[2] Zubov N.E., Mikrin E.A., Ryabchenko V.N. Matrichnye metody v teorii i praktike sistem avtomaticheskogo upravleniya letatelnykh apparatov [Matrix methods in theory and practice of aircraft automatic control systems]. Moscow, BMSTU Publ., 2016, 666 p.
[3] Krasovskiy A.A., Vavilov Yu.A., Suchkov A.I. Sistemy avtomaticheskogo upravleniya letatelnykh apparatov [The automatic control system of aircrafts]. Moscow, Zhukovsky Air Force Engineering Academy Publ., 1986, 480 p.
[4] Mikrin E.A., Zubov N.E., Misrikhanov M.Sh., Ryabchenko V.N. Avtomatizatsiya. Sovremennye tekhnologii - Automation. Modern Technologies, 2015. no. 6, pp. 3-8.
[5] Li P.Y. Advanced control systems design. University of Minnesota, 2012, 89 p.
[6] Yang K., Orsi R. IEEE Trans. Automat. Control, 2007, pp. 2146-2150.
[7] Mori K. IEEE Trans. Circ. Sys., 2002, vol. 49, pp. 743-75.
[8] Bhattachrya S. Sparsity based feedback design: A new paradigm in opportunistic sensing. Proc. American Control Conf., 2011, pp. 3704-3709.
[9] Blumthaler I., Oberst U. Linear Algebra Appl., 2012, vol. 436 (5-2), pp. 963-1000.
[10] Bosche J., Bachelier O., Mehdi D. Robust pole placement by static output feedback. Proc. 43rd IEEE Conf. Decision & Control. Paradise Island, Bahamas, 2004, pp. 869-874.
[11] Franke M. International Journal of Control, 2014, vol. 87 (1), pp. 64-75.
[12] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Oleynik A.S., Ryabchenko V.N. Izvestiya RAN. Teoriya i sistemy upravleniya - Journal of Computer and Systems Sciences International, 2014, no. 3, pp. 134-149.