Магнитные, токовые и тепловые неустойчивости в сверхпроводниках (обзор результатов существующей теории устойчивости)
Опубликовано: 15.07.2013
Авторы: Романовский В.Р.
Опубликовано в выпуске: #1(13)/2013
DOI: 10.18698/2308-6033-2013-1-582
Раздел: Машиностроение | Рубрика: Криогенная техника
Обсуждаются основные результаты исследования условий возникновения неустойчивостей, которые могут разрушить сверхпроводящее состояние вследствие действия возмущений различной природы. Показано, что существующие теории устойчивости развиваются независимо друг от друга. Кроме того, они не позволяют корректно описать влияние на условия стабильности сверхпроводящего состояния изменения теплового состояния сверпроводника, неизбежно происходящего перед возникновением магнитных или токовых неустойчивостей.
Литература
[1] Альтов В.А., Зенкевич В.Б., Кремлев М.Г., Сычев В.В. Стабилизация сверхпроводящих магнитных систем. – М.: Энергоатомиздат, 1984. – 312 с.
[2] Уилсон М. Сверхпроводящие магниты. – М.: Мир, 1985. – 408 с.
[3] Гуревич А.Вл., Минц Р.Г., Рахманов А.Л. Физика композитных сверхпроводников. – М.: Наука, 1987. – 240 с.
[4] Кремлев М.Г. Об устойчивости критических состояний в сверхпроводниках второго рода // Письма в ЖЭТФ. – 1973. – Т. 17. Вып. 6. – С. 312–316
[5] Kremlev M.G. Damping of flux jumps by flux flow resistance // Cryogenics – 1974. – Vol. 14. No. 3. – P. 132–134
[6] Кремлев М.Г., Минц Р.Г., Рахманов А.Л. Об устойчивости критического состояния в комбинированных сверхпроводниках // ДАН СССР – 1976. – Т. 228. № 1. –С. 85–87
[7] Кремлев М.Г., Минц Р.Г., Рахманов А.Л. Устойчивость критического состояния в сверхпроводящих системах // Изв. АН СССР. Энергетика и транспорт. – 1977. – № 1. – С. 67–76
[8] WipfS. L. Magnetic instabilities in type-II superconductors // Phys. Rev.– 1967. – Vol. 161. No. 2. – P. 404–416
[9] Duchateau J.J., Turk B. Theoretical and experimental study of magnetic instabilities in multifilamentary Nb-Ti superconducting composites // IEEE Trans. on Mag. – 1975. – Vol. 11. No. 2. – P. 350–353
[10] Duchateau J.J., Turk B. Dynamic stability and critical currents in superconducting multifilamentary composites // J. Appl. Phys. – 1975. – Vol. 46. No. 11. – P. 4989–4995
[11] Mints R.G., Rakhmanov A.L. Flux jump and critical state stability in superconductors // J. Phys. D: Appl. Phys. – 1975. Vol. 8. No. 8. – P. 1769–1782
[12] Mints R.G., Rakhmanov A.L. Limited flux jumps in hard superconductors // J. Phys. D: Appl. Phys. – 1983. – Vol. 16. No. 12. – P. 2495–2503
[13] Akachi T., Ogasawara T., Yasukochi K. Magnetic instability in high field superconductors // Japanese J. Appl. Phys. – 1981. – Vol. 10. No. 8. – P. 1559– 1571
[14] Legrand L., Rosenman I., Simon Ch., et al. Magnetothermal instabilities in YBa2Cu3O7 // Physica C. – 1993. – Vol. 211. – P. 239–249
[15] Muller K.H., Andrikidis C. Flux jumps in melt-textured Y-Ba-Cu-O // Phys. Rev. B. – 1994. –Vol. 49. No. 2. – P. 1294–1307
[16] Mints R.G. Flux creep and flux jumping // Phys. Rev. B. – 1996. – Vol. 53–49. No. 18. – P. 12311–12317
[17] Legrand L., Rosenman I., Mints R. G., et. al. Self-organized criticality effect on stability: magneto-thermal oscillations in a granular YBCO superconductor // Europhys. Lett. – 1996. – Vol. 34. No. 4. – P. 287–292
[18] Mints R.G., Brandt E.H. Flux jumping in thin films // Phys. Rev. B. – 1996. – Vol. 54. No. 17. – P. 12421–12426
[19] Khene S., Barbara B. Flux jump in YBa2Cu3O7 single crystals at low temperature and fields up to 11 T // Solid State Commun. – 1999. – Vol. 109. – P. 727–731
[20] Milner A. High-field flux jumps in BSCCO at very low temperature // Physica B. – 2001. – Vol. 294–295. – P. 388–392
[21] Chabanenko V.V., Rusakov V.F., D’yachenko A.I., et al. Role of the field dependence of the heat capacity for the flux jump process in HTSC materials // Physica C. – 2002. – Vol. 369. – P. 227–231
[22] Fisher L.M., Goa P.E., Baziljevich M. et al. Hydrodynamic instability of the flux-antiflux interface in type-II superconductors // Phys. Rev. Lett. – 2001. – Vol. 87. No. 24. – P. 247005-1–247005-4
[23] Chikaba J. Effect of thermal insulation on flux jumps in Nb-50%Ti rods // Cryogenics. – 1970. – Vol. 10. No. 8. – P. 306–313
[24] Morton N., Darby M.I. Prediction of flux jumps in type II superconductors // Cryogenics. – 1973. – Vol. 13. No. 4. – P. 232–235
[25] Darby M.I., Morton N. Numerical solutions for the nonlinear penetration of magnetic flux into type II superconductors // J. of Computational Phys. – 1973. – Vol. 13. No. 1. – P. 35–44
[26] Bussiere J.F., Le Blanc M.A.R. A dynamic model for flux jumps in type-II superconductors // J. Appl. Phys. – 1975. – Vol. 46. No. 1. – P. 406–415
[27] Gijsbertse E.A., vander Klundert L.J.M., van Rij M.L.D., et al. Non-isothermal flux penetration in type II superconductors // Cryogenics. – 1981. – Vol. 21. No. 6. – P. 419–425
[28] Vander Klundert L.J.M. Electrodynamics sources of non-uniform heat production in composite superconductors causing instabilities // Cryogenics. – 1992. – Vol. 32. No. 5. – P. 508–512
[29] Polak M., Hlasnik I., Krempasky L. Voltage-current characteristics of Nb-Ti and Nb3Sn superconductors in flux creep region // Cryogenics – 1973. – Vol. 13. No. 12. – P. 702–711
[30] Kaiho K., Ohara T., Koyama K. Flux jumps in flux creep state // Cryogenics. – 1976. – Vol. 16. No. 2. – P. 103–109
[31] Andrianov V.V., Baev V.P., Ivanov S.S., et al. Superconducting current stability in composite superconductors // Cryogenics. – 1982. – Vol. 22. No. 2. – P. 81–87
[32] Mints R.G., Rakhmanov A.L. Current-voltage characteristics and superconducting state stability in composite // J. Phys. D: Appl. Phys. – 1982. – Vol. 15. No. 11. – P. 2297–2306
[33] Klimenko E.Y u., Martovetsky N.N., Novikov S.I. Stability of the real superconductors // Proc. of MT-9 Conf. – Zurich, Switzerland, 1985. – P. 581–583
[34] Клименко Е.Ю., Мартовецкий Н.Н., Новиков С.И. Стабильность сверхпроводящих проводов с реальной переходной характеристикой. – В кн.: Техническая сверхпроводимость в электроэнергетике и электротехнике. – М.: СЭВ, 1986. – С. 161–187
[35] Клименко Е.Ю., Мартовецкий Н.Н., Новиков С.И. Стабильность сверхпроводящих проводов в быстропеременных полях // Сверхпроводимость: физика, химия, техника. – 1989. – Т. 28. № 11. – P. 152–165
[36] Klimenko E. Yu., Martovetsky N.N. Stability of the superconducting wires. Modern state of the theory // IEEE Trans. on Mag. – 1992. – Vol. 28. No. 1. – P. 842–845
[37] Klimenko E.Yu., Martovetsky N.N., Novikov S.I. Effect of heat capacity and matrix resistivity on stability of superconductor in fast changing fields // Proc. of MT-11 Conf. – Tsukuba, Japan, 1989. Vol. 2. – P. 1066–1071
[38] Клименко Е.Ю., Козицын В.Е., Мартовецкий Н.Н., Новиков С.И. Экспериментальная проверка РПХ-теории стабильности // ДАН. – 1987. – Т. 292. №. 5. – P. 1119–1122
[39] Клименко Е.Ю., Мартовецкий Н.Н., Новиков С.И. О стабильности сверхпроводящих проводов с размытым переходом в нормальное состояние // ДАН. – 1981. – Т. 261. № 6. – С. 1350–1354
[40] Андрианов В.В., Баев В.П., Минц Р.Г., Рахманов А.Л. О предельных токах в комбинированных сверхпроводниках // ДАН. – 1981. – Т. 260. – № 2. – С. 328–331
[41] Andrianov V.V., Baev V.P., Ivanov S.S., et al. Current-carrying capacity of composite superconductors // IEEE Trans. on Mag. – 1983. – Vol. 19. No. 3. – P. 240–243
[42] Majoros M., Mints R.G., Polak M., et al. Current carrying capacity of superconductors for 50 Hz applications // Cryogenics. – 1987. – Vol. 27. No. 11. – P. 617–620
[43] Lesensky L., Neurath P.W. NbZr superconducting critical current dependence on dI /dt // J. Appl. Phys. – 1963. – Vol. 34. No. 3. – P. 710–711
[44] Laverick C. Experimental studies on the current-carrying capacity of niobium-zirconium wires under conditions of fixed and swept magnetic field // Advanced in Cryog. Engng. – 1964. – Vol. 9. – P. 321–328
[45] Kalsi S.S., Aized D., Connor B., et al. HTS SMES magnet design and test results // IEEE Trans. on Appl. Supercon. – 1997. – Vol. 7. No. 2. – P. 971–975
[46] Kumakura H., Kitaguchi H., Togano K., et al. Performance test of Bi-2212 pancake coils fabricated by a lamination method // Cryogenics. – 1998. – Vol. 38. No. 2. – P. 163–167
[47] Kumakura H., Kitaguchi H., Togano K., et al. Performance test of Bi-2223 pancake magnet // Cryogenics. – 1998. – Vol. 38. No. 6. – P. 639–643
[48] Kiss T., Vysotsky V.S., Yuge H., et al. Heat propagation and stability in a small high Tc superconductor coil // Physica C. – 1998. – Vol. 310. – P. 372–376
[49] Vysotsky V.S., Kiss T., Inoue M., et al. Quench characteristics in HTSC devices // IEEE Trans. on Appl. Supercon. – 1999. – Vol. 9. No. 2. – P. 1073–1076
[50] Paul W., Meier J.P. Inductive measurements of voltage-current characteristics between 10.12 V/cm and 10.2 V/cm in rings of Bi2212 ceramics // Physica C. – 1993. – Vol. 205. – P. 240–246
[51] List F.A., Martin P.M., Kroeger D.M. An automatic system for current-voltage characterization of ceramic superconductors // Rev. Sci. Instrum. – 1996. – Vol. 67. No. 9. – P. 3187–3192
[52] Wakuda T., Nakano T., Iwakuma M., et al. E — J characteristics and a.c. losses in a superconducting Bi(2223) hollow cylinder // Cryogenics. – 1997. – Vol. 37. No. 7. – P. 381–388
[53] Watanabe K., Motokawa M. New concept of a semi-superconducting magnet // IEEE Trans. on Appl. Supercon. – 2001. – Vol. 11. No. 1. – P. 2320–2323
[54] Kodama T., Fukuda M., Shiraishi K., et al. E — J characteristics in a wide range of electric field for a Bi-2223 silver-sheathed tape wire // Physica C. – 2001. – Vol. 357–360. – P. 582–585
[55] Kumakura H., Matsumoto A., Sung Y.S., Kitaguchi H. E — J characteristics of Bi-2212/Ag and Bi-2223/Ag tape conductors // Physica C. – 2003. – Vol. 384. – P. 283–290
[56] Inoue M., Kiss T., Kuga T., et al. Estimation of E — J characteristics in a YBCO coated conductor at low temperature and very high magnetic field // Physica C. – 2003. – Vol. 392–396. – P. 1078–1082
[57] Keilin V.E., Romanovskii V.R. Limiting currents in superconducting composites // IEEE Trans. on Mag. – 1992. – Vol. 12. No. 1. – P. 771–774
[58] Rakhmanov A.L., Vysotsky V.S., Ilyin Yu. A., et al. Scaling for the quench development in HTSC devices–theory // Inst. Phys. Conf. Ser. No. 167. – 2000. – P. 1243–1246
[59] Rakhmanov A.L., Vysotsky V.S., Ilyin Yu. A., et al. Universal scaling low for quench development in HTSC devices // Cryogenics. – 2000. – Vol. 40. No. 1. – P. 19–27
[60] Nishijima G., Awaji S., Murase S., et al. Thermal stability of oxide superconductor at various temperatures // IEEE Trans. on Appl. Supercon. – 2002. – Vol. 12. No. 1. – P. 1155–1158
[61] Nishijima G., Awaji S., Watanabe K. Thermal stability of oxide superconductors in flux flow state // IEEE Trans. on Appl. Supercon. – 2003. – Vol. 13. No. 2. – P. 1576–1579
[62] Fujishiro H., Oka T., Yokoyama K., et al. Time evolution and spatial distribution of temperature in YBCO bulk superconductor after pulse field magnetizing // Supercond. Sci. Technol. – 2003. – Vol. 16. – P. 809–814
[63] Fujishiro H., Oka T., Yokoyama K., et al. Flux motion studies by means of temperature measurement in magnetizing processes for HTSC bulks // IEEE Trans. on Appl. Supercon. – 2004. – Vol. 14. No. 2. – P. 1054–1057
[64] Fujishiro H., Yokoyama K., Oka T., et al. Temperature rise in an Smbased bulk superconductor after applying iterative pulse fields // Supercond. Sci. Technol. – 2004. – Vol. 17. – P. 51–57
[65] Fujishiro H., Yokoyama K., Kaneyama M., et al. Approach from temperature measurement to trapped field enhancement in HTSC bulks by pulse field magnetizing // Physica C. – 2005. – Vol. 426-431. – P. 594–601
[66] Fujishiro H., Kawaguchi S., Kaneyama M., et al. Heat propagation analysis in HTSC bulks during pulse field magnetization // Supercond. Sci. Technol. – 2006. – Vol. 19. – P. S540–S544
[67] Tanaka H., Furuse M., Arai K., et al. Thermal runaway and resistive properties of a Bi2223 pancake coil subjected to overcurrent // IEEE Trans. on Appl. Supercon. – 2005. – Vol. 15. No. 2. – P. 2094–2097
[68] Клименко Е.Ю., Мартовецкий Н.Н., Новиков С.И. О максимальном токе в сверхпроводящем проводе // ДАН. – 1985. – Т. 282. № 5. – С. 1123–1127
[69] Klimenko E.Yu., Martovetsky N.N. Stability of SC composite at rapid current charging and against pulsed heating // IEEE Trans. on Mag. – 1988. – Vol. 24. No. 2. – P. 1167–1169
[70] Altov V.V., Kremlev M.G., et al. Calculation of propagation velocity of normal and superconducting regions in composite conductors // Cryogenics. – 1978. – Vol. 13. No. 5. – P. 420–422
[71] Chen W.Y., Purcell J.R. Numerical study of normal zone evolution and stability of composite superconductors // J. Appl. Phys. – 1978. – Vol. 49. No. 6. – P. 3546–3553
[72] Schmidt C., Pasztor G. Superconductors under dynamic mechanical stress // IEEE Trans. on Mag. – 1977. – Vol. 13. No. 1. – P. 116–119
[73] Schmidt C. The induction of a propagating normal zone (quench) in a superconductor by local release // Cryogenics. – 1978. – Vol. 18. No. 10. – P. 605–610
[74] Nick W., Krath H., Ries J. Cryogenic stability of composite conductors taking into account transient heat transfer // IEEE Trans. on Mag. – 1979. – Vol. 15. No. 1. – P. 359–362
[75] Ishibashi K., et al. Thermal stability of SC high current density magnets pulse // Cryogenics. – 1979. – Vol. 19. No. 11. – P. 633–638
[76] Anashkin O.P., Keilin V.E., Lyikov V.V. Stability of compound superconductors under localized heat pulse // Cryogenics. – 1979. – Vol. 19. No. 2. – P. 77–80
[77] Keilin V.E., Kovalev I.A., Kruglov S.L., Pavin D.B. Superconductor stability against heat pulses in saturated and pressurized superfluid helium // Cryogenics. – 1980. – Vol. 20. No. 10. – P. 694–696
[78] Anashkin O.P., Keilin V.E., Lyikov V.V. The influence of Sc/Cu ratio and filament distribution on the stability of superconductors with respect to local heat pulse // Cryogenics. – 1982. – Vol. 22. No. 3. – P. 169–174
[79] Keilin V.E., Romanovsky V.R. The dimensionless analysis of the stability of composite superconductors with respect to thermal disturbances // Cryogenics. – 1982. – Vol. 22. No. 6. – P. 313–317
[80] Романовский В.Р. Правомерность использования теории минимально распространяющейся нормальной зоны для анализа тепловой стабильности комбинированных сверхпроводников // ДАН СССР. – 1984. – Т. 279. № 4. – С. 884–887
[81] Romanovsky V.R. Regularity of thermal stability conditions of composite superconductors postulated by the theory of minimum propagating zone // J. Phys. D: Appl. Phys. – 1985. – Vol. 18. – P. 121–127
[82] Buznikov N.A., Pukhov A.A. Analytical method to calculate the quench energy of a superconductor carrying a transport current // Cryogenics. – 1996. – Vol. 36. No. 7. – P. 547–553
[83] Ivanov S.S., Pukhov A.A., Shchegolev I.O. Scaling law for quench energies of composite superconductors // Supercond. Sci. Technol. – 1994. – Vol. 7. – P. 502–505
[84] Romanovskii V.R. Influence of volume fraction of superconductor on the stability of superconducting composites with respect to thermal disturbances of finite extent // Cryogenics. – 1985. – Vol. 25. No. 6. – P. 327–333
[85] Keilin V.E., Lyikov V.V., Romanovskii V.R. Development of superconducting solenoids from multifilamentary niobium – tin wires without stabilizing matrix and analysis of their thermal stability // Cryogenics. – 1985. – Vol. 25. No. 9. – P. 462–465
[86] Romanovskii V.R. Stability of superconducting composites under thermal disturbances with change in the external magnetic field and the critical temperature of the superconductor // Cryogenics. – 1988. – Vol. 28. No. 11. – P. 756–761
[87] Romanovskii V.R. Stability of current-carrying elements of superconducting magnets to thermal disturbances // Advances in Cryog. Engng. – 1990. – Vol. 35. – P. 693–699
[88] Романовский В.Р. Решение задачи об устойчивости сверхпроводящего состояния цилиндрического провода к поверхностному нагреву в двумерной постановке // ЖТФ. – 1990. – Т. 60. Вып. 4. – С. 31–36
[89] Романовский В.Р. Стационарная стабилизация сверхпроводящего токонесущего элемента при неравномерном распределении температуры в поперечном сечении // ДАН. – 1993. – Т. 330. № 3. – С. 304–307
[90] Pradhan S., Romanovskii V.R. Thermal stability of superconducting multifilamentary wire with multiply connected stabilizing regions // Cryogenics. – 1999. – Vol. 39. No. 4. – P. 339–350
[91] Rakhmanov A.L. Normal zone initiation in composite superconductors // Cryogenics. – 1983. – Vol. 23. No. 9. – P. 487–491
[92] Pukhov A.A., Rakhmanov A.L. Normal zone propagation in the composite superconductor carrying varying current // Cryogenics. – 1992. – Vol. 32. No. 10. – P. 427–430
[93] Pukhov A.A., Rakhmanov A.L., Tsikhon V.N., Vysotsky V.S. Acceleration of normal zone propagation in superconductor with changing current // Supercond. Sci. Technol. – 1994. – Vol. 7. – P. 154–159
[94] Buznikov N.A., Pukhov A.A., Rakhmanov A.L. Normal zone acceleration: a new model to describe the quench process in superconductors with changing current // Cryogenics. – 1994. – Vol. 34. No. 9. – P. 761–769
[95] Pukhov A.A., Rakhmanov A.L., Tsikhon V.N., Vysotsky V.S. Anomalous quench propagation in superconductors under fast current decrease // IEEE Trans. on Appl. Supercond. – 1995. – Vol. 5. No. 2. – P. 560–563
[96] Buznikov N.A., Pukhov A.A., Rakhmanov A.L., Vysotsky V.S. Current redistribution between strands and quench process in a superconducting cable // Cryogenics. – 1996. – Vol. 36. No. 4. – P. 275–281